Ward Jessica

No Thumbnail Available
Last Name
Ward
First Name
Jessica
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Estimating cetacean population density using fixed passive acoustic sensors : an example with Blainville's beaked whales
    (Acoustical Society of America, 2009-04) Marques, Tiago A. ; Thomas, Len ; Ward, Jessica ; DiMarzio, Nancy A. ; Tyack, Peter L.
    Methods are developed for estimating the size/density of cetacean populations using data from a set of fixed passive acoustic sensors. The methods convert the number of detected acoustic cues into animal density by accounting for (i) the probability of detecting cues, (ii) the rate at which animals produce cues, and (iii) the proportion of false positive detections. Additional information is often required for estimation of these quantities, for example, from an acoustic tag applied to a sample of animals. Methods are illustrated with a case study: estimation of Blainville's beaked whale density over a 6 day period in spring 2005, using an 82 hydrophone wide-baseline array located in the Tongue of the Ocean, Bahamas. To estimate the required quantities, additional data are used from digital acoustic tags, attached to five whales over 21 deep dives, where cues recorded on some of the dives are associated with those received on the fixed hydrophones. Estimated density was 25.3 or 22.5 animals/1000 km2, depending on assumptions about false positive detections, with 95% confidence intervals 17.3–36.9 and 15.4–32.9. These methods are potentially applicable to a wide variety of marine and terrestrial species that are hard to survey using conventional visual methods.
  • Article
    Beaked whales respond to simulated and actual navy sonar
    (Public Library of Science, 2011-03-14) Tyack, Peter L. ; Zimmer, Walter M. X. ; Moretti, David J. ; Southall, Brandon L. ; Claridge, Diane E. ; Durban, John W. ; Clark, Christopher W. ; D'Amico, Angela ; DiMarzio, Nancy A. ; Jarvis, Susan ; McCarthy, Elena ; Morrissey, Ronald ; Ward, Jessica ; Boyd, Ian L.
    Beaked whales have mass stranded during some naval sonar exercises, but the cause is unknown. They are difficult to sight but can reliably be detected by listening for echolocation clicks produced during deep foraging dives. Listening for these clicks, we documented Blainville's beaked whales, Mesoplodon densirostris, in a naval underwater range where sonars are in regular use near Andros Island, Bahamas. An array of bottom-mounted hydrophones can detect beaked whales when they click anywhere within the range. We used two complementary methods to investigate behavioral responses of beaked whales to sonar: an opportunistic approach that monitored whale responses to multi-day naval exercises involving tactical mid-frequency sonars, and an experimental approach using playbacks of simulated sonar and control sounds to whales tagged with a device that records sound, movement, and orientation. Here we show that in both exposure conditions beaked whales stopped echolocating during deep foraging dives and moved away. During actual sonar exercises, beaked whales were primarily detected near the periphery of the range, on average 16 km away from the sonar transmissions. Once the exercise stopped, beaked whales gradually filled in the center of the range over 2–3 days. A satellite tagged whale moved outside the range during an exercise, returning over 2–3 days post-exercise. The experimental approach used tags to measure acoustic exposure and behavioral reactions of beaked whales to one controlled exposure each of simulated military sonar, killer whale calls, and band-limited noise. The beaked whales reacted to these three sound playbacks at sound pressure levels below 142 dB re 1 µPa by stopping echolocation followed by unusually long and slow ascents from their foraging dives. The combined results indicate similar disruption of foraging behavior and avoidance by beaked whales in the two different contexts, at exposures well below those used by regulators to define disturbance.