Hunter-Cevera Kristen R.

No Thumbnail Available
Last Name
Hunter-Cevera
First Name
Kristen R.
ORCID
0000-0002-0306-0346

Search Results

Now showing 1 - 5 of 5
  • Article
    Seasons of Syn
    (Wiley, 2019-11-19) Hunter-Cevera, Kristen R. ; Neubert, Michael G. ; Olson, Robert J. ; Shalapyonok, Alexi ; Solow, Andrew R. ; Sosik, Heidi M.
    Synechococcus is a widespread and important marine primary producer. Time series provide critical information for identifying and understanding the factors that determine abundance patterns. Here, we present the results of analysis of a 16‐yr hourly time series of Synechococcus at the Martha's Vineyard Coastal Observatory, obtained with an automated, in situ flow cytometer. We focus on understanding seasonal abundance patterns by examining relationships between cell division rate, loss rate, cellular properties (e.g., cell volume, phycoerythrin fluorescence), and environmental variables (e.g., temperature, light). We find that the drivers of cell division vary with season; cells are temperature‐limited in winter and spring, but light‐limited in the fall. Losses to the population also vary with season. Our results lead to testable hypotheses about Synechococcus ecophysiology and a working framework for understanding the seasonal controls of Synechococcus cell abundance in a temperate coastal system.
  • Thesis
    Population dynamics and diversity of Synechococcus on the New England Shelf
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2014-09) Hunter-Cevera, Kristen R.
    Synechococcus is a ubiquitous marine primary producer. Our understanding of the factors that determine its abundance has been limited by available observational tools, which have not been able to resolve population dynamics at timescales that match response times of cells (hours-days). Development of an automated flow cytometer (FlowCytobot) has enabled hourly observation of Synechococcus at the Martha’s Vineyard Coastal Observatory (MVCO) since 2003. In order to ascribe changes in cell abundances to either growth or loss processes, information on division rate is needed. I refined a matrix population model that relates diel changes in the distribution of cell volume to division rate and demonstrated that it provides accurate estimates of daily division rate for both cultured and natural populations. Application of the model to the 11-year MVCO time series reveals that division rate is temperature limited during winter and spring, but light limited during fall. Inferred loss rates closely follow division rate in magnitude over the entire seasonal cycle, suggesting that losses are mainly generated by biological processes. While Synechococcus cell abundance, division rate, and loss rate demonstrate striking seasonal patterns, there are also significant shorter timescale variations and important multi-year trends that may be linked to climate. Interpretation of population dynamic patterns is complicated by the diversity found within marine Synechococcus, which is partitioned into 20 genetically distinct clades. Each clade may represent an ecotype, with a distinct ecological niche. To understand how diversity may affect population dynamics, I assessed the diversity at MVCO over annual cycles with culture-independent and dependent approaches. The population at MVCO is diverse, but dominated by clade I representatives throughout the year. Other clades were only found during summer and fall. High through-put sequencing of a diversity marker allowed a more quantitative investigation into these patterns. Five main Synechococcus oligotypes that comprise the population showed seasonal abundance patterns: peaking either during the spring bloom or during late summer and fall. This pattern strongly suggests that features of seasonal abundance are affected by the underlying diversity structure. Synechococcus abundance patterns result from a complex interplay among seasonal environmental changes, diversity, and biological losses.
  • Article
    Seasonal succession and spatial patterns of Synechococcus microdiversity in a salt marsh estuary revealed through 16S rRNA gene oligotyping
    (Frontiers Media, 2017-08-09) Mackey, Katherine R. M. ; Hunter-Cevera, Kristen R. ; Britten, Gregory L. ; Murphy, Leslie G. ; Sogin, Mitchell L. ; Huber, Julie A.
    Synechococcus are ubiquitous and cosmopolitan cyanobacteria that play important roles in global productivity and biogeochemical cycles. This study investigated the fine scale microdiversity, seasonal patterns, and spatial distributions of Synechococcus in estuarine waters of Little Sippewissett salt marsh (LSM) on Cape Cod, MA. The proportion of Synechococcus reads was higher in the summer than winter, and higher in coastal waters than within the estuary. Variations in the V4–V6 region of the bacterial 16S rRNA gene revealed 12 unique Synechococcus oligotypes. Two distinct communities emerged in early and late summer, each comprising a different set of statistically co-occurring Synechococcus oligotypes from different clades. The early summer community included clades I and IV, which correlated with lower temperature and higher dissolved oxygen levels. The late summer community included clades CB5, I, IV, and VI, which correlated with higher temperatures and higher salinity levels. Four rare oligotypes occurred in the late summer community, and their relative abundances more strongly correlated with high salinity than did other co-occurring oligotypes. The analysis revealed that multiple, closely related oligotypes comprised certain abundant clades (e.g., clade 1 in the early summer and clade CB5 in the late summer), but the correlations between these oligotypes varied from pair to pair, suggesting they had slightly different niches despite being closely related at the clade level. Lack of tidal water exchange between sampling stations gave rise to a unique oligotype not abundant at other locations in the estuary, suggesting physical isolation plays a role in generating additional microdiversity within the community. Together, these results contribute to our understanding of the environmental and ecological factors that influence patterns of Synechococcus microbial community composition over space and time in salt marsh estuarine waters.
  • Article
    Dynamics and functional diversity of the smallest phytoplankton on the Northeast US shelf
    (National Academy of Sciences, 2020-05-15) Fowler, Bethany L. ; Neubert, Michael G. ; Hunter-Cevera, Kristen R. ; Olson, Robert J. ; Shalapyonok, Alexi ; Solow, Andrew R. ; Sosik, Heidi M.
    Picophytoplankton are the most abundant primary producers in the ocean. Knowledge of their community dynamics is key to understanding their role in marine food webs and global biogeochemical cycles. To this end, we analyzed a 16-y time series of observations of a phytoplankton community at a nearshore site on the Northeast US Shelf. We used a size-structured population model to estimate in situ division rates for the picoeukaryote assemblage and compared the dynamics with those of the picocyanobacteria Synechococcus at the same location. We found that the picoeukaryotes divide at roughly twice the rate of the more abundant Synechococcus and are subject to greater loss rates (likely from viral lysis and zooplankton grazing). We describe the dynamics of these groups across short and long timescales and conclude that, despite their taxonomic differences, their populations respond similarly to changes in the biotic and abiotic environment. Both groups appear to be temperature limited in the spring and light limited in the fall and to experience greater mortality during the day than at night. Compared with Synechococcus, the picoeukaryotes are subject to greater top-down control and contribute more to the region’s primary productivity than their standing stocks suggest.
  • Article
    Sixty years of Sverdrup : a retrospective of progress in the study of phytoplankton blooms
    (The Oceanography Society, 2014-03) Fischer, Alexis D. ; Moberg, Emily A. ; Alexander, Harriet ; Brownlee, Emily F. ; Hunter-Cevera, Kristen R. ; Pitz, Kathleen J. ; Rosengard, Sarah Z. ; Sosik, Heidi M.
    One of the most dramatic large-scale features in the ocean is the seasonal greening of the North Atlantic in spring and summer due to the accumulation of phytoplankton biomass in the surface layer. In 1953, Harald Ulrik Sverdrup hypothesized a now canonical mechanism for the development and timing of phytoplankton blooms in the North Atlantic. Over the next 60 years, Sverdrup's Critical Depth Hypothesis spurred progress in understanding of bloom dynamics and offered a valuable theoretical framework on which to build. In reviewing 60 years of literature, the authors trace the development of modern bloom initiation hypotheses, highlighting three case studies that illuminate the complexity, including both catalysts and impediments, of scientific progress in the wake of Sverdrup's hypothesis. Most notably, these cases demonstrate that the evolution of our understanding of phytoplankton blooms was paced by access not only to technology but also to concurrent insights from several disciplines. This exploration of the trajectories and successes in bloom studies highlights the need for expanding interdisciplinary collaborations to address the complexity of phytoplankton bloom dynamics.