Frischkorn Kyle R.

No Thumbnail Available
Last Name
Frischkorn
First Name
Kyle R.
ORCID

Search Results

Now showing 1 - 3 of 3
  • Article
    Transcriptional shifts highlight the role of nutrients in harmful brown tide dynamics
    (Frontiers Media, 2019-02-12) Wurch, Louie L. ; Alexander, Harriet ; Frischkorn, Kyle R. ; Haley, Sheean T. ; Gobler, Christopher J. ; Dyhrman, Sonya T.
    Harmful algal blooms (HABs) threaten ecosystems and human health worldwide. Controlling nitrogen inputs to coastal waters is a common HAB management strategy, as nutrient concentrations often suggest coastal blooms are nitrogen-limited. However, defining best nutrient management practices is a long-standing challenge: in part, because of difficulties in directly tracking the nutritional physiology of harmful species in mixed communities. Using metatranscriptome sequencing and incubation experiments, we addressed this challenge by assaying the in situ physiological ecology of the ecosystem destructive alga, Aureococcus anophagefferens. Here we show that gene markers of phosphorus deficiency were expressed in situ, and modulated by the enrichment of phosphorus, which was consistent with the observed growth rate responses. These data demonstrate the importance of phosphorus in controlling brown-tide dynamics, suggesting that phosphorus, in addition to nitrogen, should be evaluated in the management and mitigation of these blooms. Given that nutrient concentrations alone were suggestive of a nitrogen-limited ecosystem, this study underscores the value of directly assaying harmful algae in situ for the development of management strategies.
  • Article
    Epibionts dominate metabolic functional potential of Trichodesmium colonies from the oligotrophic ocean
    (Nature Publishing Group, 2017-05-23) Frischkorn, Kyle R. ; Rouco, Monica ; Van Mooy, Benjamin A. S. ; Dyhrman, Sonya T.
    Trichodesmium is a genus of marine diazotrophic colonial cyanobacteria that exerts a profound influence on global biogeochemistry, by injecting ‘new’ nitrogen into the low nutrient systems where it occurs. Colonies of Trichodesmium ubiquitously contain a diverse assemblage of epibiotic microorganisms, constituting a microbiome on the Trichodesmium host. Metagenome sequences from Trichodesmium colonies were analyzed along a resource gradient in the western North Atlantic to examine microbiome community structure, functional diversity and metabolic contributions to the holobiont. Here we demonstrate the presence of a core Trichodesmium microbiome that is modulated to suit different ocean regions, and contributes over 10 times the metabolic potential of Trichodesmium to the holobiont. Given the ubiquitous nature of epibionts on colonies, the substantial functional diversity within the microbiome is likely an integral facet of Trichodesmium physiological ecology across the oligotrophic oceans where this biogeochemically significant diazotroph thrives.
  • Article
    Trichodesmium physiological ecology and phosphate reduction in the western tropical South Pacific
    (Copernicus Publications on behalf of the European Geosciences Union, 2018-10-02) Frischkorn, Kyle R. ; Krupke, Andreas ; Guieu, Cecile ; Louis, Justine ; Rouco, Monica ; Salazar Estrada, Andrés E. ; Van Mooy, Benjamin A. S. ; Dyhrman, Sonya T.
    N2 fixation by the genus Trichodesmium is predicted to support a large proportion of the primary productivity across the oligotrophic oceans, regions that are considered among the largest biomes on Earth. Many of these environments remain poorly sampled, limiting our understanding of Trichodesmium physiological ecology in these critical oligotrophic regions. Trichodesmium colonies, communities that consist of the Trichodesmium host and their associated microbiome, were collected across the oligotrophic western tropical South Pacific (WTSP). These samples were used to assess host clade distribution, host and microbiome metabolic potential, and functional gene expression, with a focus on identifying Trichodesmium physiological ecology in this region. Genes sets related to phosphorus, iron, and phosphorus–iron co-limitation were dynamically expressed across the WTSP transect, suggestive of the importance of these resources in driving Trichodesmium physiological ecology in this region. A gene cassette for phosphonate biosynthesis was detected in Trichodesmium, the expression of which co-varied with the abundance of Trichodesmium Clade III, which was unusually abundant relative to Clade I in this environment. Coincident with the expression of the gene cassette, phosphate reduction to phosphite and low-molecular-weight phosphonate compounds was measured in Trichodesmium colonies. The expression of genes that enable use of such reduced-phosphorus compounds were also measured in both Trichodesmium and the microbiome. Overall, these results highlight physiological strategies employed by consortia in an undersampled region of the oligotrophic WTSP and reveal the molecular mechanisms underlying previously observed high rates of phosphorus reduction in Trichodesmium colonies.