Gast Rebecca J.

No Thumbnail Available
Last Name
Gast
First Name
Rebecca J.
ORCID
0000-0003-3875-3975

Search Results

Now showing 1 - 20 of 38
  • Article
    Environmental distribution and persistence of Quahog Parasite Unknown (QPX)
    (Inter-Research, 2008-09-24) Gast, Rebecca J. ; Moran, Dawn M. ; Audemard, Corinne ; Lyons, M. Maille ; DeFaveri, Jacquelin ; Reece, Kimberly S. ; Leavitt, Dale F. ; Smolowitz, Roxanna M.
    Quahog Parasite Unknown (QPX) is the cause of mass mortality events of hard clams Mercenaria mercenaria from Virginia, USA, to New Brunswick, Canada. Aquaculture areas in Massachusetts, USA, have been particularly hard hit. The parasite has been shown to be a directly infective organism, but it is unclear whether it could exist or persist outside of its clam host. We used molecular methods to examine water, sediment, seaweeds, seagrass and various invertebrates for the presence of QPX. Sites in Virginia and Massachusetts were selected based upon the incidence of QPX-induced clam die-offs, and they were monitored seasonally. QPX was detectable in almost all of our different sample types from Massachusetts, indicating that the parasite was widely distributed in the environment. Significantly more samples from Massachusetts were positive than from Virginia, and there was a seasonal pattern to the types of samples positive from Massachusetts. The data suggest that, although it may be difficult to completely eradicate QPX from the environment, it may be possible to keep the incidence of disease under control through good plot husbandry and the removal of infected and dying clams.
  • Preprint
    Molecular phylogeny of the parasitic dinoflagellate Syltodinium listii (Gymnodiniales, Dinophyceae) and generic transfer of Syltodinium undulans comb. nov. (=Gyrodinium undulans)
    (Elsevier, 2019-09-17) Gómez, Fernando ; Artigas, Luis Felipe ; Gast, Rebecca J.
    The parasitic dinoflagellate Syltodinium listii was investigated from the open waters of the English Channel and the NW Mediterranean Sea. Syltodinium listii has been unreported since its original description in the North Sea. Cells of S. listii were able to immediately infect copepod eggs of different species, and even nauplii, and after each infection to form up to 32 cells embedded in a mucous envelope. Infection of the same host by more than one dinoflagellate was frequent; although overall, the progeny were reduced in number. Molecular phylogeny based on the small subunit ribosomal RNA (SSU rRNA) gene revealed that S. listii clusters with a group of environmental sequences from the cold North Atlantic region as a sister group of Gymnodinium aureolum. The large subunit ribosomal RNA (LSU rRNA) gene sequences of S. listii from the English Channel and cf. Gyrodinium undulans from the Mediterranean Sea were identical. Thus, we propose Syltodinium undulans comb. nov. for Gyrodinium undulans. The first internal transcribed spacer (ITS) and complete SSU rRNA gene sequences of Dissodinium pseudolunula are provided. The parasitic species of Chytriodinium, Dissodinium and Syltodinium cluster together within the family Chytriodiniaceae, including the free-living species Gymnodinium aureolum, G. corollarium and G. plasticum.
  • Article
    Marine vertebrate zoonoses : an overview of the DAO Special Issue
    (Inter-Research, 2008-08-19) Moore, Michael J. ; Gast, Rebecca J. ; Bogomolni, Andrea L.
    The role of marine birds, mammals, turtles and fish as vectors of infectious agents of potential risk to humans can be examined from a variety of perspectives. The studies in this DAO Special include a broad survey of multiple agents and species, a sequencing study of Giardia intestinalis haplotypes known to be pathogenic to humans, an assessment of risks to humans working with marine mammals, a source tracking study using E. coli ribotypes, studies of regional Salmonella and Brucella epizootiology, a serology survey and a case report of a herpes simplex infection in a dolphin. Additionally, a recently published study (Venn-Watson et al. 2008; Dis Aquat Org 79:87–93) classifying pure cultures of bacteria from a captive dolphin colony also pertains to this theme. These studies raise the following questions: whether the presence of zoonotic agents in marine vertebrates represents a risk to other marine vertebrates, humans, or both; what are the routes by which these marine vertebrate zoonotic infections are acquired and circulated in the marine ecosystem; to what degree are such agents subclinical versus causes of overt disease in marine vertebrates; what are the subsets of the human population most likely to be affected by such infections; and which human health preventive measures would seem reasonable?
  • Article
    Temporal and spatial variability of phytoplankton and mixotrophs in a temperate estuary
    (Inter Research, 2021-10-28) Millette, Nicole ; da Costa, Marcella ; Mora, Jordan ; Gast, Rebecca J.
    A significant proportion of phototrophic species are known to be mixotrophs: cells that obtain nutrients through a combination of photosynthesis and prey ingestion. Current methods to estimate mixotroph abundance in situ are known to be limited in their ability to help identify conditions that favor mixotrophs over strict autotrophs. For the first time, we combine microscopic analysis of phototrophic taxa with immunoprecipitated bromodeoxyuridine (BrdU)-labeled DNA amplicon sequencing to identify and quantify active and putative mixotrophs at 2 locations in a microtidal temperate estuary. We analyze these data to examine spatial and temporal variability of phytoplankton and mixotrophs. Microscopy-based phototrophic diversity and abundances reveal expected seasonal patterns for our 2 stations, with the start of growth in winter and highest abundances in summer. Diatoms tend to dominate at the site with less stratification, while dinoflagellates and euglenids are usually more prominent at the stratified station. The BrdU-based mixotroph identifications are translated to the microscopy identification and abundances to estimate the proportion of mixotrophs (cells >10 µm in size) at both sites. The average proportion of potential mixotrophs is higher at the station with higher stratification (51%) compared to the station with lower stratification (30%), and potential mixotrophs tend to be higher in summer, although we did not conduct BrdU experiments in any of the other seasons. Combining the identification of active mixotrophs through the uptake of BrdU-labeled bacteria with robust abundance measurements can expand our understanding of mixotrophs across systems.
  • Article
    Nuclear small-subunit ribosomal RNA gene-based characterization, molecular phylogeny and PCR detection of the Neoparamoeba from western Long Island Sound lobster
    (National Shellfisheries Association, 2005-10-01) Mullen, Thomas E. ; Nevis, Kathleen R. ; O'Kelly, Charles J. ; Gast, Rebecca J. ; Frasca, Salvatore
    Western Long Island Sound (LIS) lobsters collected by trawl surveys, lobstermen and coastal residents during 2000 to 2002 were identified histologically as infected with a parasome-containing amoeba. Primers to conserved SSU rRNA sequences of parasome-containing amoebae and their nonparasome-containing relatives were used to amplify overlapping SSU rRNA fragments of the presumptive parasite from gill, antenna, antennal gland and ventral nerve cord of infected lobsters. The consensus sequence constructed from these fragments had 98% or greater nucleotide sequence identity with SSU rRNA gene sequences of strains of Neoparamoeba pemaquidensis and associated with high confidence in distance- and parsimony-based phylogenetic analyses with strains of Neoparamoeba pemaquidensis and not members of the family Paramoebidae, e.g., Paramoeba eilhardi. Primers designed to SSU rRNA sequences of the lobster amoeba and other paramoebid/vexilliferid amoebae were used in a nested polymerase chain reaction (PCR) protocol to test DNA extracted from formalin-fixed paraffin-embedded tissues of lobsters collected during the 1999 die-off, when this amoeba initially was identified by light and electron microscopy and reported to be a paramoeba of the genera Paramoeba or Neoparamoeba (Mullen et al. 2004). All sequences amplified from 1999 lobsters, with the exception of one, had 98% to 99% identity to each other, and the 1999 PCR product consensus had 98% identity to Neoparamoeba pemaquidensis strains CCAP 1560/4 (AF371969.1) and 1560/5 (AF371970.1). Molecular characterization of the amoeba from western LIS lobsters by direct amplification circumvents a collective inability to culture the organism in vitro, provides insight into the molecular epidemiology of neoparamoebiasis in American lobster, and allows for PCR-based detection of infected lobsters for future research and diagnostics.
  • Preprint
    Lethal marine snow : pathogen of bivalve mollusc concealed in marine aggregates
    ( 2005-06-14) Lyons, M. Maille ; Ward, J. Evan ; Smolowitz, Roxanna M. ; Uhlinger, Kevin R. ; Gast, Rebecca J.
    We evaluated marine aggregates as environmental reservoirs for a thraustochytrid pathogen, Quahog Parasite Unknown (QPX), of the northern quahog or hard clam, Mercenaria mercenaria. Positive results from in situ hybridization and denaturing gradient gel electrophoresis confirm the presence of QPX in marine aggregates collected from coastal embayments in Cape Cod, Massachusetts, where QPX outbreaks have occurred. In laboratory experiments, aggregates were observed and recorded by entering a quahog’s pallial cavity, thereby delivering embedded particles from the water column to its benthic bivalve host. The occurrence of pathogen-laden aggregates in coastal areas experiencing repeated disease outbreaks suggests a means for the spread and survival of pathogens between epidemics and provides a specific target for environmental monitoring of those pathogens.
  • Article
    Mixotrophy : a widespread and important ecological strategy for planktonic and sea-ice nanoflagellates in the Ross Sea, Antarctica
    (Inter-Research, 2009-03-04) Moorthi, Stefanie D. ; Caron, David A. ; Gast, Rebecca J. ; Sanders, Robert W.
    Mixotrophic nanoflagellates (MNF) were quantified in plankton and sea ice of the Ross Sea, Antarctica, during austral spring. Tracer experiments using fluorescently labeled bacteria (FLB) were conducted to enumerate MNF and determine their contribution to total chloroplastidic and total bacterivorous nanoflagellates. Absolute abundances of MNF were typically <200 ml–1 in plankton assemblages south of the Polar Front, but they comprised 8 to 42% and 3 to 25% of bacterivorous nanoflagellates in the water column and ice cores, respectively. Moreover, they represented up to 10% of all chloroplastidic nanoflagellates in the water column when the prymnesiophyte Phaeocystis antarctica was blooming (up to 23% if P. antarctica, which did not ingest FLB, was excluded from calculations). In ice cores, MNF comprised 5 to 10% of chloroplastidic nanoflagellates. The highest proportions of MNF were found in some surface water samples and in plankton assemblages beneath ice, suggesting a potentially large effect as bacterial grazers in those locations. This study is the first to report abundances and distributions of mixotrophic flagellates in the Southern Ocean. The presence of MNF in every ice and water sample examined suggests that mixotrophy is an important alternative dietary strategy in this region.
  • Article
    Molecular characterization of Giardia intestinalis haplotypes in marine animals : variation and zoonotic potential
    (Inter-Research, 2008-08-19) Lasek-Nesselquist, Erica ; Bogomolni, Andrea L. ; Gast, Rebecca J. ; Mark Welch, David B. ; Ellis, Julie C. ; Sogin, Mitchell L. ; Moore, Michael J.
    Giardia intestinalis is a microbial eukaryotic parasite that causes diarrheal disease in humans and other vertebrates worldwide. The negative effect on quality of life and economics caused by G. intestinalis may be increased by its potential status as a zoonosis, or a disease that can be transmitted from animals to humans. The zoonotic potential of G. intestinalis has been implied for over 2 decades, with human-infecting genotypes (belonging to the 2 major subgroups, Assemblages A and B) occurring in wildlife and domesticated animals. There are recent reports of G. intestinalis in shellfish, seals, sea lions and whales, suggesting that marine animals are also potential reservoirs of human disease. However, the prevalence, genetic diversity and effect of G. intestinalis in marine environments and the role that marine animals play in transmission of this parasite to humans are relatively unexplored. Here, we provide the first thorough molecular characterization of G. intestinalis in marine vertebrates. Using a multi-locus sequencing approach, we identify human-infecting G. intestinalis haplotypes of both Assemblages A and B in the fecal material of dolphins, porpoises, seals, herring gulls Larus argentatus, common eiders Somateria mollissima and a thresher shark Alopias vulpinus. Our results indicate that G. intestinalis is prevalent in marine ecosystems, and a wide range of marine hosts capable of harboring zoonotic forms of this parasite exist. The presence of G. intestinalis in marine ecosystems raises concerns about how this disease might be transmitted among different host species.
  • Preprint
    Dinoflagellates Amyloodinium and Ichthyodinium (Dinophyceae), parasites of marine fishes in the South Atlantic Ocean
    ( 2018-10) Gómez, Fernando ; Gast, Rebecca J.
    The morphology and molecular phylogeny of the parasitic dinoflagellates Ichthyodinium chabelardi and Amyloodinium ocellatum was investigated off Brazil (South Atlantic Ocean). This is the first record of Ichthyodinium and the first molecular data of both parasites from the southern hemisphere. Ichthyodinium chabelardi infected the yolk of eggs of feral populations of Argentine anchovy (Engraulis anchoita; Engraulidae) and Brazilian sardinella (Sardinella brasiliensis; Clupeidae) in different seasons. The SSU rRNA and ITS gene sequences were identical and confirmed Ichthyodinium as a host generalist. The new sequences clustered with the type species I. chabelardi from the North Atlantic and environmental sequences from the Pacific Ocean. A second species from the western Pacific remains undescribed. Amyloodinium ocellatum was isolated from the gills of a cultured cobia fish (Rachycentron canadum) after causing mortality. The SSU rRNA gene sequence of the Brazilian isolate was almost identical to those from the northern hemisphere. This suggests a single species with a widespread distribution, although it is uncertain whether the species has a natural pantropical distribution or is the result of artificial distribution due to the humaninduced fish transport.
  • Article
    DGGE-based detection method for Quahog Parasite Unknown (QPX)
    (Inter-Research, 2006-06-12) Gast, Rebecca J. ; Cushman, E. ; Moran, Dawn M. ; Uhlinger, Kevin R. ; Leavitt, Dale F. ; Smolowitz, Roxanna M.
    Quahog Parasite Unknown (QPX) is a significant cause of hard clam Mercenaria mercenaria mortality along the northeast coast of the United States. It infects both wild and cultured clams, often annually in plots that are heavily farmed. Subclinically infected clams can be identified by histological examination of the mantle tissue, but there is currently no method available to monitor the presence of QPX in the environment. Here, we report on a polymerase chain reaction (PCR)-based method that will facilitate the detection of QPX in natural samples and seed clams. With our method, between 10 and 100 QPX cells can be detected in 1 l of water, 1 g of sediment and 100 mg of clam tissue. Denaturing gradient gel electrophoresis (DGGE) is used to establish whether the PCR products are the same as those in the control QPX culture. We used the method to screen 100 seed clams of 15 mm, and found that 10 to 12% of the clams were positive for the presence of the QPX organism. This method represents a reliable and sensitive procedure for screening both environmental samples and potentially contaminated small clams.
  • Article
    Victims or vectors : a survey of marine vertebrate zoonoses from coastal waters of the Northwest Atlantic
    (Inter-Research, 2008-08-19) Bogomolni, Andrea L. ; Gast, Rebecca J. ; Ellis, Julie C. ; Dennett, Mark R. ; Pugliares, Katie R. ; Lentell, Betty J. ; Moore, Michael J.
    Surveillance of zoonotic pathogens in marine birds and mammals in the Northwest Atlantic revealed a diversity of zoonotic agents. We found amplicons to sequences from Brucella spp., Leptospira spp., Giardia spp. and Cryptosporidium spp. in both marine mammals and birds. Avian influenza was detected in a harp seal and a herring gull. Routine aerobic and anaerobic culture showed a broad range of bacteria resistant to multiple antibiotics. Of 1460 isolates, 797 were tested for resistance, and 468 were resistant to one or more anti-microbials. 73% (341/468) were resistant to 1–4 drugs and 27% (128/468) resistant to 5–13 drugs. The high prevalence of resistance suggests that many of these isolates could have been acquired from medical and agricultural sources and inter-microbial gene transfer. Combining birds and mammals, 45% (63/141) of stranded and 8% (2/26) of by-caught animals in this study exhibited histopathological and/or gross pathological findings associated with the presence of these pathogens. Our findings indicate that marine mammals and birds in the Northwest Atlantic are reservoirs for potentially zoonotic pathogens, which they may transmit to beachgoers, fishermen and wildlife health personnel. Conversely, zoonotic pathogens found in marine vertebrates may have been acquired via contamination of coastal waters by sewage, run-off and agricultural and medical waste. In either case these animals are not limited by political boundaries and are therefore important indicators of regional and global ocean health.
  • Preprint
    Bacterivory by phototrophic picoplankton and nanoplankton in Arctic waters
    ( 2011-11) Sanders, Robert W. ; Gast, Rebecca J.
    Mixotrophy, the combination of phototrophy and heterotrophy within the same individual, is widespread in oceanic systems. Yet, neither the presence nor ecological impact of mixotrophs has been identified in an Arctic marine environment. We quantified nano- and picoplankton during early autumn in the Beaufort Sea and Canada Basin and determined relative rates of bacterivory by heterotrophs and mixotrophs. Results confirmed previous reports of low microbial biomass for Arctic communities in autumn. The impact of bacterivory was relatively low, ranging from 0.6 x 103 to 42.8 x 103 bacteria mL-1 day-1, but it was often dominated by pico- or nano-mixotrophs. From 1-7% of the photosynthetic picoeukaryotes were bacterivorous, while mixotrophic nanoplankton abundance comprised 1-22% of the heterotrophic and 2-32% of the phototrophic nanoplankton abundance, respectively. The estimated daily grazing impact was usually < 5% of the bacterial standing stock, but impacts as high as 25% occurred. Analysis of denaturing gradient gel electrophoresis band patterns indicated that communities from different depths at the same site were appreciably different, and that there was a shift in community diversity at the midpoint of the cruise. Sequence information from DGGE bands reflected microbes related to ones from other Arctic studies, particularly from the Beaufort Sea.
  • Dataset
    Environmental measurements and high throughput sequencing data from samples collected at Martha's Vineyard Coastal Observation (MVCO) from 2013-2017
    (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2020-06-08) Gast, Rebecca J.
    This dataset contains environmental measurements from Martha's Vineyard Coastal Observatory (MVCO) made from 2013-2017. Related high throughput sequencing data are available from NCBI under project numbers PRJNA504617 and PRJNA626352. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/814424
  • Article
    Linking the oceans to public health : current efforts and future directions
    (BioMed Central, 2008-11-07) Kite-Powell, Hauke L. ; Fleming, Lora E. ; Backer, Lorraine C. ; Faustman, Elaine M. ; Hoagland, Porter ; Tsuchiya, Ami ; Younglove, Lisa R. ; Wilcox, Bruce A. ; Gast, Rebecca J.
    We review the major linkages between the oceans and public health, focusing on exposures and potential health effects due to anthropogenic and natural factors including: harmful algal blooms, microbes, and chemical pollutants in the oceans; consumption of seafood; and flooding events. We summarize briefly the current state of knowledge about public health effects and their economic consequences; and we discuss priorities for future research. We find that: • There are numerous connections between the oceans, human activities, and human health that result in both positive and negative exposures and health effects (risks and benefits); and the study of these connections comprises a new interdisciplinary area, "oceans and human health." • The state of present knowledge about the linkages between oceans and public health varies. Some risks, such as the acute health effects caused by toxins associated with shellfish poisoning and red tide, are relatively well understood. Other risks, such as those posed by chronic exposure to many anthropogenic chemicals, pathogens, and naturally occurring toxins in coastal waters, are less well quantified. Even where there is a good understanding of the mechanism for health effects, good epidemiological data are often lacking. Solid data on economic and social consequences of these linkages are also lacking in most cases. • The design of management measures to address these risks must take into account the complexities of human response to warnings and other guidance, and the economic tradeoffs among different risks and benefits. Future research in oceans and human health to address public health risks associated with marine pathogens and toxins, and with marine dimensions of global change, should include epidemiological, behavioral, and economic components to ensure that resulting management measures incorporate effective economic and risk/benefit tradeoffs.
  • Article
    Diversity of microbial eukaryotes along the West Antarctic Peninsula in austral spring
    (Frontiers Media, 2022-05-16) Grattepanche, Jean-David ; Jeffrey, Wade H. ; Gast, Rebecca J. ; Sanders, Robert W.
    During a cruise from October to November 2019, along the West Antarctic Peninsula, between 64.32 and 68.37°S, we assessed the diversity and composition of the active microbial eukaryotic community within three size fractions: micro- (> 20 μm), nano- (20–5 μm), and pico-size fractions (5–0.2 μm). The communities and the environmental parameters displayed latitudinal gradients, and we observed a strong similarity in the microbial eukaryotic communities as well as the environmental parameters between the sub-surface and the deep chlorophyll maximum (DCM) depths. Chlorophyll concentrations were low, and the mixed layer was shallow for most of the 17 stations sampled. The richness of the microplankton was higher in Marguerite Bay (our southernmost stations), compared to more northern stations, while the diversity for the nano- and pico-plankton was relatively stable across latitude. The microplankton communities were dominated by autotrophs, mostly diatoms, while mixotrophs (phototrophs-consuming bacteria and kleptoplastidic ciliates, mostly alveolates, and cryptophytes) were the most abundant and active members of the nano- and picoplankton communities. While phototrophy was the dominant trophic mode, heterotrophy (mixotrophy, phagotrophy, and parasitism) tended to increase southward. The samples from Marguerite Bay showed a distinct community with a high diversity of nanoplankton predators, including spirotrich ciliates, and dinoflagellates, while cryptophytes were observed elsewhere. Some lineages were significantly related—either positively or negatively—to ice coverage (e.g., positive for Pelagophyceae, negative for Spirotrichea) and temperature (e.g., positive for Cryptophyceae, negative for Spirotrichea). This suggests that climate changes will have a strong impact on the microbial eukaryotic community.
  • Article
    Characterization of protistan assemblages in the Ross Sea, Antarctica, by denaturing gradient gel electrophoresis
    (American Society for Microbiology, 2004-04) Gast, Rebecca J. ; Dennett, Mark R. ; Caron, David A.
    The diversity of protistan assemblages has traditionally been studied using microscopy and morphological characterization, but these methods are often inadequate for ecological studies of these communities because most small protists inherently lack adequate taxonomic characters to facilitate their identification at the species level and many protistan species also do not preserve well. We have therefore used a culture-independent approach (denaturing gradient gel electrophoresis [DGGE]) to obtain an assessment of the genetic composition and distribution of protists within different microhabitats (seawater, meltwater or slush on sea-ice floes, and ice) of the Ross Sea, Antarctica. Samples of the same type (e.g., water) shared more of the same bands than samples of different types (e.g., ice versus water), despite being collected from different sites. These findings imply that samples from the same environment have a similar protistan species composition and that the type of microenvironment significantly influences the protistan species composition of these Antarctic assemblages. It should be noted that a large number of bands among the samples within each microhabitat were distinct, indicating the potential presence of significant genetic diversity within each microenvironment. Sequence analysis of selected DGGE bands revealed sequences that represent diatoms, dinoflagellates, ciliates, flagellates, and several unidentified eukaryotes.
  • Preprint
    The extraordinary longevity of kleptoplasts derived from the Ross Sea haptophyte Phaeocystis antarctica within dinoflagellate host cells relates to the diminished role of the oxygen-evolving Photosystem II and to supplementary light harvesting by mycosporine-like amino acid/s
    ( 2016-12) Stamatakis, Kostas ; Vayenos, Dimitris ; Kotakis, Christos ; Gast, Rebecca J. ; Papageorgiou, George C.
    The haptophyte Phaeocystis antarctica and the novel Ross Sea dinoflagellate that hosts kleptoplasts derived from P. antarctica (RSD; R.J. Gast et al., 2006, J. Phycol. 42 233–242) were compared for photosynthetic light harvesting and for oxygen evolution activity. Both chloroplasts and kleptoplasts emit chlorophyll a (Chl a) fluorescence peaking at 683 nm (F683) at 277 K and at 689 (F689) at 77 K. Second derivative analysis of the F689 band at 77 K revealed two individual contributions centered at 683 nm (Fi-683) and at 689 (Fi-689). Using the p-nitrothiophenol (p-NTP) treatment of Kobayashi et al. (Biochim. Biophys. Acta 423 (1976) 80-90) to differentiate between Photosystem (PS) II and I fluorescence emissions, we could identify PS II as the origin of Fi-683 and PS I as the origin of Fi-689. Both emissions could be excited not only by Chl a-selective light (436 nm) but also by mycosporine-like aminoacids (MAAs)-selective light (345 nm). This suggests that a fraction of MAAs must be proximal to Chls a and, therefore, located within the plastids. On the basis of second derivative fluorescence spectra at 77K, of p-NTP resolved fluorescence spectra, as well as of PSII-driven oxygen evolution activities, PS II appears substantially less active (~ 1/5) in dinoflagellate kleptoplasts than in P. antarctica chloroplasts. We suggest that a diminished role of PS II, a known source of reactive oxygen species, and a diminished dependence on nucleus-encoded light-harvesting proteins, due to supplementary light-harvesting by MAAs, may account for the extraordinary longevity of RSD kleptoplasts.
  • Article
    The coastal environment and human health : microbial indicators, pathogens, sentinels and reservoirs
    (BioMed Central, 2008-11-07) Stewart, Jill R. ; Gast, Rebecca J. ; Fujioka, Roger S. ; Solo-Gabriele, Helena M. ; Meschke, J. Scott ; Amaral-Zettler, Linda A. ; del Castillo, Erika ; Polz, Martin F. ; Collier, Tracy K. ; Strom, Mark S. ; Sinigalliano, Christopher D. ; Moeller, Peter D. R. ; Holland, A. Fredrick
    Innovative research relating oceans and human health is advancing our understanding of disease-causing organisms in coastal ecosystems. Novel techniques are elucidating the loading, transport and fate of pathogens in coastal ecosystems, and identifying sources of contamination. This research is facilitating improved risk assessments for seafood consumers and those who use the oceans for recreation. A number of challenges still remain and define future directions of research and public policy. Sample processing and molecular detection techniques need to be advanced to allow rapid and specific identification of microbes of public health concern from complex environmental samples. Water quality standards need to be updated to more accurately reflect health risks and to provide managers with improved tools for decision-making. Greater discrimination of virulent versus harmless microbes is needed to identify environmental reservoirs of pathogens and factors leading to human infections. Investigations must include examination of microbial community dynamics that may be important from a human health perspective. Further research is needed to evaluate the ecology of non-enteric water-transmitted diseases. Sentinels should also be established and monitored, providing early warning of dangers to ecosystem health. Taken together, this effort will provide more reliable information about public health risks associated with beaches and seafood consumption, and how human activities can affect their exposure to disease-causing organisms from the oceans.
  • Article
    Phylogeny and synonymy of Gyrodinium heterostriatum comb. nov. (Dinophyceae), a common unarmored dinoflagellate in the world oceans
    (Jagiellonian University Press, 2020-07-08) Gómez, Fernando ; Artigas, Luis Felipe ; Gast, Rebecca J.
    The North Sea and the English Channel are regions with a long tradition of plankton studies, where the colony-forming haptophyte Phaeocystis globosa dominates the spring phytoplankton blooms. Among its predators, we investigated an abundant unarmored dinoflagellate (~3000 cells per liter) in the North Sea in May 2019. It has been reported in the literature as Gymnodinium heterostriatum or G. striatissimum, and often identified as Gyrodinium spirale. Phylogenetic analyses using the small-, large subunit- and Internal Transcriber Spacers of the ribosomal RNA (SSU-, LSU-, ITS rRNA) gene sequences indicate that our isolates clustered within the Gyrodinium clade. The new sequences formed a sister group with sequences of the freshwater taxon Gyrodinium helveticum, being one of the infrequent marine-freshwater transitions in the microbial world. This isolate is the first characterized member of a clade of numerous environmental sequences widely distributed from cold to tropical seas. This common and abundant taxon has received several names due to its morphological plasticity (changes of size and shape, often deformed after engulfing prey) and the difficulty in discerning surface striation. We conclude that the priority is for the species name Gymnodinium heterostriatum Kofoid & Swezy 1921, a new name that was proposed for Gymnodinium spirale var. obtusum sensu Dogiel 1906. The species Gyrodinium striatissimum (Hulburt 1957) Gert Hansen & Moestrup 2000 and Gymnodinium lucidum D. Ballantine in Parke & Dixon 1964 (=G. hyalinum M. Lebour 1925) are posterior synonyms. We propose Gyrodinium heterostriatum comb. nov. for Gymnodinium heterostriatum.
  • Preprint
    Defining DNA-based operational taxonomic units for microbial-eukaryote ecology
    ( 2009-06-19) Caron, David A. ; Countway, Peter D. ; Savai, Pratik ; Gast, Rebecca J. ; Schnetzer, Astrid ; Moorthi, Stefanie D. ; Dennett, Mark R. ; Moran, Dawn M. ; Jones, Adriane C.
    DNA sequence information has been increasingly used in ecological research on microbial eukaryotes. Sequence-based approaches have included studies of the total diversity of selected ecosystems, the autecology of ecologically relevant species, and the identification and enumeration of species of interest to human health. It is still uncommon, however, to delineate protistan species based on their genetic signatures. The reluctance to assign species-level designations based on DNA sequences is partly a consequence of the limited amount of sequence information presently available for many free-living microbial eukaryotes, and partly the problematic nature and debate surrounding the microbial species concept. Despite the difficulties inherent in assigning species names to DNA sequences, there is a growing need to attach meaning to the burgeoning amount of sequence information entering the literature, and a growing desire to apply this information in ecological studies. We describe a computer-based tool that assigns DNA sequences from environmental databases to operational taxonomic units at approximate species-level distinctions. The approach provides a practical method for ecological studies of microbial eukaryotes (primarily protists) by enabling semiautomated analysis of large numbers of samples spanning great taxonomic breadth. Derivation of the algorithm was based on an analysis of complete small subunit ribosomal RNA (18S) gene sequences and partial gene sequences obtained from GenBank for morphologically described protistan species. The program was tested using environmental 18S data sets from two oceanic ecosystems. A total of 388 operational taxonomic units were observed among 2,207 sequences obtained from samples collected in the western North Atlantic and eastern North Pacific.