Sánchez-Garrido José C.

No Thumbnail Available
Last Name
Sánchez-Garrido
First Name
José C.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    The Western Alboran Gyre: an analysis of its properties and its exchange with surrounding water
    (American Meteorological Society, 2020-11-18) Brett, Genevieve ; Pratt, Lawrence J. ; Rypina, Irina I. ; Sánchez-Garrido, José C.
    One of the largest and most persistent features in the Alboran Sea is the Western Alboran Gyre (WAG), an anticyclonic recirculation bounded by the Atlantic Jet (AJ) to the north and the Moroccan coast to the south. Eulerian budgets from several months of a high-resolution model run are used to examine the exchange of water across the Eulerian WAG’s boundary and the processes affecting the salinity, temperature, and vorticity of the WAG. The volume transport across the sides of the WAG is found to be related to vertical isopycnal movement at the base of the gyre. Advection is found to drive a decay in the salinity minimum and anticyclonic vorticity of the Eulerian WAG. Given the large contributions of advection, a Lagrangian analysis is performed, revealing geometric aspects of the exchange that are hidden in an Eulerian view. In particular, stable and unstable manifolds identify a stirring region around the outer reaches of the gyre where water is exchanged with the WAG on a time scale of weeks. Its complement is an inner core that expands with depth and exchanges water with its surroundings on much longer time scales. The 3D evolution of one parcel, or lobe, of water as it enters the WAG is also described, identifying a general Lagrangian subduction pathway.
  • Article
    Numerical modeling of three-dimensional stratified tidal flow over Camarinal Sill, Strait of Gibraltar
    (American Geophysical Union, 2011-12-17) Sánchez-Garrido, José C. ; Sannino, Gianmaria ; Liberti, L. ; García Lafuente, J. ; Pratt, Lawrence J.
    The baroclinic response to barotropic tidal forcing in the Camarinal Sill area, within the Strait of Gibraltar, is investigated with a three-dimensional, fully nonlinear, nonhydrostatic numerical model. The aim of numerical efforts was the assessment of three-dimensional effects, which are potentially significant in the area because of rather irregular bottom topography, variable background stratification, and complex structure of barotropic tides. Model results reveal a complex baroclinic response under relatively moderate flood tidal currents, which includes the formation of internal hydraulic jumps upstream of the sill, internal cross waves close to the channel walls, and a plunging pycnocline at the lee side of the sill crest. These structures exhibit significant cross-channel spatial dependence and may appear to be aligned together across the channel. This fact makes their identification difficult from the surface pattern captured by remote sensing images. Under strong barotropic forcing (spring tides) the upstream hydraulic jumps are shifted to the lee side of Camarinal Sill, where a single internal hydraulic jump is formed. Significant first- and second-mode hydraulic jumps are also generated near smaller secondary sills in Tangier basin, thus extending the occurrence of intense water mixing and energy dissipation to other zones of the strait.