Baetge
Nicholas
Baetge
Nicholas
No Thumbnail Available
2 results
Search Results
Now showing
1 - 2 of 2
-
ArticleDifferent carboxyl-rich alicyclic molecules proxy compounds select distinct bacterioplankton for oxidation of dissolved organic matter in the mesopelagic Sargasso Sea(Wiley, 2020-01-23) Liu, Shuting ; Parsons, Rachel J. ; Opalk, Keri ; Baetge, Nicholas ; Giovannoni, Stephen J. ; Bolaños, Luis M. ; Kujawinski, Elizabeth B. ; Longnecker, Krista ; Lu, YueHan ; Halewood, Elisa ; Carlson, Craig A.Marine dissolved organic matter (DOM) varies in its recalcitrance to rapid microbial degradation. DOM of varying recalcitrance can be exported from the ocean surface to depth by subduction or convective mixing and oxidized over months to decades in deeper seawater. Carboxyl‐rich alicyclic molecules (CRAM) are characterized as a major component of recalcitrant DOM throughout the oceanic water column. The oxidation of CRAM‐like compounds may depend on specific bacterioplankton lineages with oxidative enzymes capable of catabolizing complex molecular structures like long‐chain aliphatics, cyclic alkanes, and carboxylic acids. To investigate the interaction between bacteria and CRAM‐like compounds, we conducted microbial remineralization experiments using several compounds rich in carboxyl groups and/or alicyclic rings, including deoxycholate, humic acid, lignin, and benzoic acid, as proxies for CRAM. Mesopelagic seawater (200 m) from the northwest Sargasso Sea was used as media and inoculum and incubated over 28 d. All amendments demonstrated significant DOC removal (2–11 μmol C L−1) compared to controls. Bacterioplankton abundance increased significantly in the deoxycholate and benzoic acid treatments relative to controls, with fast‐growing Spongiibacteracea, Euryarcheaota, and slow‐growing SAR11 enriched in the deoxycholate treatment and fast‐growing Alteromonas, Euryarcheaota, and Thaumarcheaota enriched in the benzoic acid treatment. In contrast, bacterioplankton grew slower in the lignin and humic acid treatments, with oligotrophic SAR202 becoming significantly enriched in the lignin treatment. Our results indicate that the character of the CRAM proxy compounds resulted in distinct bacterioplankton removal rates of DOM and affected specific lineages of bacterioplankton capable of responding.
-
ArticleSeasonal mixed layer depth shapes phytoplankton physiology, viral production, and accumulation in the North Atlantic(Nature Research, 2021-11-17) Diaz, Ben P. ; Knowles, Benjamin ; Johns, Christopher T. ; Laber, Christien P. ; Bondoc, Karen Grace V. ; Haramaty, Liti ; Natale, Frank ; Harvey, Elizabeth L. ; Kramer, Sasha J. ; Bolaños, Luis M. ; Lowenstein, Daniel P. ; Fredricks, Helen F. ; Graff, Jason R. ; Westberry, Toby K. ; Mojica, Kristina D. A. ; Haëntjens, Nils ; Baetge, Nicholas ; Gaube, Peter ; Boss, Emmanuel S. ; Carlson, Craig A. ; Behrenfeld, Michael J. ; Van Mooy, Benjamin A. S. ; Bidle, Kay D.Seasonal shifts in phytoplankton accumulation and loss largely follow changes in mixed layer depth, but the impact of mixed layer depth on cell physiology remains unexplored. Here, we investigate the physiological state of phytoplankton populations associated with distinct bloom phases and mixing regimes in the North Atlantic. Stratification and deep mixing alter community physiology and viral production, effectively shaping accumulation rates. Communities in relatively deep, early-spring mixed layers are characterized by low levels of stress and high accumulation rates, while those in the recently shallowed mixed layers in late-spring have high levels of oxidative stress. Prolonged stratification into early autumn manifests in negative accumulation rates, along with pronounced signatures of compromised membranes, death-related protease activity, virus production, nutrient drawdown, and lipid markers indicative of nutrient stress. Positive accumulation renews during mixed layer deepening with transition into winter, concomitant with enhanced nutrient supply and lessened viral pressure.