Richman
James G.
Richman
James G.
No Thumbnail Available
Search Results
Now showing
1 - 5 of 5
-
ArticleOn eddy viscosity, energy cascades, and the horizontal resolution of gridded satellite altimeter products(American Meteorological Society, 2013-02) Arbic, Brian K. ; Polzin, Kurt L. ; Scott, Robert B. ; Richman, James G. ; Shriver, Jay F.Motivated by the recent interest in ocean energetics, the widespread use of horizontal eddy viscosity in models, and the promise of high horizontal resolution data from the planned wide-swath satellite altimeter, this paper explores the impacts of horizontal eddy viscosity and horizontal grid resolution on geostrophic turbulence, with a particular focus on spectral kinetic energy fluxes Π(K) computed in the isotropic wavenumber (K) domain. The paper utilizes idealized two-layer quasigeostrophic (QG) models, realistic high-resolution ocean general circulation models, and present-generation gridded satellite altimeter data. Adding horizontal eddy viscosity to the QG model results in a forward cascade at smaller scales, in apparent agreement with results from present-generation altimetry. Eddy viscosity is taken to roughly represent coupling of mesoscale eddies to internal waves or to submesoscale eddies. Filtering the output of either the QG or realistic models before computing Π(K) also greatly increases the forward cascade. Such filtering mimics the smoothing inherent in the construction of present-generation gridded altimeter data. It is therefore difficult to say whether the forward cascades seen in present-generation altimeter data are due to real physics (represented here by eddy viscosity) or to insufficient horizontal resolution. The inverse cascade at larger scales remains in the models even after filtering, suggesting that its existence in the models and in altimeter data is robust. However, the magnitude of the inverse cascade is affected by filtering, suggesting that the wide-swath altimeter will allow a more accurate determination of the inverse cascade at larger scales as well as providing important constraints on smaller-scale dynamics.
-
ArticleSpectral decomposition of internal gravity wave sea surface height in global models(John Wiley & Sons, 2017-10-10) Savage, Anna C. ; Arbic, Brian K. ; Alford, Matthew H. ; Ansong, Joseph ; Farrar, J. Thomas ; Menemenlis, Dimitris ; O’Rourke, Amanda K. ; Richman, James G. ; Shriver, Jay F. ; Voet, Gunnar ; Wallcraft, Alan J. ; Zamudio, LuisTwo global ocean models ranging in horizontal resolution from 1/12° to 1/48° are used to study the space and time scales of sea surface height (SSH) signals associated with internal gravity waves (IGWs). Frequency-horizontal wavenumber SSH spectral densities are computed over seven regions of the world ocean from two simulations of the HYbrid Coordinate Ocean Model (HYCOM) and three simulations of the Massachusetts Institute of Technology general circulation model (MITgcm). High wavenumber, high-frequency SSH variance follows the predicted IGW linear dispersion curves. The realism of high-frequency motions (>0:87 cpd) in the models is tested through comparison of the frequency spectral density of dynamic height variance computed from the highest-resolution runs of each model (1/25° HYCOM and 1/48° MITgcm) with dynamic height variance frequency spectral density computed from nine in situ profiling instruments. These high-frequency motions are of particular interest because of their contributions to the small-scale SSH variability that will be observed on a global scale in the upcoming Surface Water and Ocean Topography (SWOT) satellite altimetry mission. The variance at supertidal frequencies can be comparable to the tidal and low-frequency variance for high wavenumbers (length scales smaller than ∼50 km), especially in the higher-resolution simulations. In the highest-resolution simulations, the high-frequency variance can be greater than the low-frequency variance at these scales.
-
ArticleFrequency content of sea surface height variability from internal gravity waves to mesoscale eddies(John Wiley & Sons, 2017-03-28) Savage, Anna C. ; Arbic, Brian K. ; Richman, James G. ; Shriver, Jay F. ; Alford, Matthew H. ; Buijsman, Maarten C. ; Farrar, J. Thomas ; Sharma, Hari ; Voet, Gunnar ; Wallcraft, Alan J. ; Zamudio, LuisHigh horizontal-resolution (1=12:5° and 1=25°) 41-layer global simulations of the HYbrid Coordinate Ocean Model (HYCOM), forced by both atmospheric fields and the astronomical tidal potential, are used to construct global maps of sea surface height (SSH) variability. The HYCOM output is separated into steric and nonsteric and into subtidal, diurnal, semidiurnal, and supertidal frequency bands. The model SSH output is compared to two data sets that offer some geographical coverage and that also cover a wide range of frequencies—a set of 351 tide gauges that measure full SSH and a set of 14 in situ vertical profilers from which steric SSH can be calculated. Three of the global maps are of interest in planning for the upcoming Surface Water and Ocean Topography (SWOT) two-dimensional swath altimeter mission: (1) maps of the total and (2) nonstationary internal tidal signal (the latter calculated after removing the stationary internal tidal signal via harmonic analysis), with an average variance of 1:05 and 0:43 cm2, respectively, for the semidiurnal band, and (3) a map of the steric supertidal contributions, which are dominated by the internal gravity wave continuum, with an average variance of 0:15 cm2. Stationary internal tides (which are predictable), nonstationary internal tides (which will be harder to predict), and nontidal internal gravity waves (which will be very difficult to predict) may all be important sources of high-frequency ‘‘noise’’ that could mask lower frequency phenomena in SSH measurements made by the SWOT mission.
-
Technical ReportSpace and time scales of mesoscale motion in the western North Atlantic(Woods Hole Oceanographic Institution, 2018-08) Richman, James G. ; Wunsch, Carl ; Hogg, Nelson G.From moored data, primarily temperature, of the Mid-Ocean Dynamics Experiment (ModeI) and its successor experiments we find a statistical description of the mesoscale variability. In the ModeI area itself the spectral characteristics of the thermocline and the deep water are different. The thermocline is conveniently described as being made up of three spectral bands: a ' low-frequency' band dominated by zonal velocity fluctuations, an 'eddy-containing' band in which the velocity field is nearly isotropic, and a 'high-frequency' band consistent with models of geostrophic turbulence. In the deep water the zonal dominance at low frequencies is not apparent, and there is enhanced energy at periods of 20-50 days. Vertical structure scales with WK BJ approximation in the high-frequency band but not in the lower frequencies, where low vertical modes dominate the motion. Linear models do not adequately describe the data in the ModeI region. Differences between rough and smooth topography regions are clearly seen only at 1500 m, where there is a loss of energy consistent with a reduced barotropic motion. Other differences, while apparently real, are small. It is found, consistent with the results of Schmitz (1976a), that the ModeI region is atypical of the midocean in that large changes of energy level are found elsewhere. A region due east of ModeI has slightly reduced kinetic energy levels in the main thermocline, but deep energy levels are much lower. Potential energy is less variable than kinetic; in the eastern region the frequency spectra change structure slightly. Linear models may be more adequate there. With more than 2 years of data, no statistically significant heat flux was found in the ModeI area, except for a weak zonal flux in the deep water. There is no direct evidence for baroclinic instability as a significant mechanism of eddy generation; the Gulf Stream is a possible, if unconfirmed, source.
-
ThesisKinematics and energetics of the mesoscale mid-ocean circulation : MODE(Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1976-09) Richman, James G.The temporal and spatial variability of low frequency moored temperature and velocity observations, obtained as part of the Mid-Ocean Dynamics Experiment (MODE), are analyzed to study the kinematics and energetics of mesoscale eddies in the ocean. The temporal variability of the low frequency motions is characterized by three regimes: very low frequencies with periods greater than 200 days, an eddy energy containing band of 80 to 120 day periods, and high frequencies wìth periods less than 30 days. At very low frequencies, the zonal kinetic energy exceeds the meridional at all depths. In the thermocline, the very low frequency zonal flow dominates the total kinetic energy. The greatest contribution to the kinetic and potential energy in the MODE region, except for the thermocline zonal flow, is from an eddy energy containing band of 80 to 120 day periods. Eddy scale kinetic energy spatial variations are confined to this band. At high frequencies, the kinetic and potential energy scale with frequency as ω-2.5 and with depth in the WKB sense. Energy at high frequencies is partitioned evenly between zonal kinetic, meridional kinetic and potential energy and is homogeneous over 100 km. Using the technique of empirical orthogonal expansion, the vertical structure of the energetically dominant eddies is described by a few modes. The displacement is dominated by a mode with a thermocline maximum and in phase displacements with depth, while the kinetic energy is dominated by an equivalent barotropic mode. A smaller portion of the kinetic and potential energy is associated with out of phase thermocline and deep water currents and displacements. The dynamics of the mesoscale eddies are very nonlinear. Using the vertical veering of the current at MODE Center, the estimated horizontal advection of heat contributes significantly to the low frequency thermal balance. The observed very low frequency anisotropic flow is consistent with the nonlinear eddy spindown models, dominated by cascades of vorticity and energy. At high frequencies, the spectral similarity is consistent with advected geostrophic turbulence.