Plattner Gian-Kasper

No Thumbnail Available
Last Name
Plattner
First Name
Gian-Kasper
ORCID

Search Results

Now showing 1 - 8 of 8
  • Article
    Natural variability and anthropogenic trends in oceanic oxygen in a coupled carbon cycle–climate model ensemble
    (American Geophysical Union, 2009-02-13) Frolicher, T. L. ; Joos, Fortunat ; Plattner, Gian-Kasper ; Steinacher, M. ; Doney, Scott C.
    Internal and externally forced variability in oceanic oxygen (O2) are investigated on different spatiotemporal scales using a six-member ensemble from the National Center for Atmospheric Research CSM1.4-carbon coupled climate model. The oceanic O2 inventory is projected to decrease significantly in global warming simulations of the 20th and 21st centuries. The anthropogenically forced O2 decrease is partly compensated by volcanic eruptions, which cause considerable interannual to decadal variability. Volcanic perturbations in oceanic oxygen concentrations gradually penetrate the ocean's top 500 m and persist for several years. While well identified on global scales, the detection and attribution of local O2 changes to volcanic forcing is difficult because of unforced variability. Internal climate modes can substantially contribute to surface and subsurface O2 variability. Variability in the North Atlantic and North Pacific are associated with changes in the North Atlantic Oscillation and Pacific Decadal Oscillation indexes. Simulated decadal variability compares well with observed O2 changes in the North Atlantic, suggesting that the model captures key mechanisms of late 20th century O2 variability, but the model appears to underestimate variability in the North Pacific. Our results suggest that large interannual to decadal variations and limited data availability make the detection of human-induced O2 changes currently challenging.
  • Article
    Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model
    (Copernicus Publications on behalf of the European Geosciences Union, 2009-04-06) Steinacher, M. ; Joos, Fortunat ; Frolicher, T. L. ; Plattner, Gian-Kasper ; Doney, Scott C.
    Ocean acidification from the uptake of anthropogenic carbon is simulated for the industrial period and IPCC SRES emission scenarios A2 and B1 with a global coupled carbon cycle-climate model. Earlier studies identified seawater saturation state with respect to aragonite, a mineral phase of calcium carbonate, as a key variable governing impacts on corals and other shell-forming organisms. Globally in the A2 scenario, water saturated by more than 300%, considered suitable for coral growth, vanishes by 2070 AD (CO2≈630 ppm), and the ocean volume fraction occupied by saturated water decreases from 42% to 25% over this century. The largest simulated pH changes worldwide occur in Arctic surface waters, where hydrogen ion concentration increases by up to 185% (ΔpH=−0.45). Projected climate change amplifies the decrease in Arctic surface mean saturation and pH by more than 20%, mainly due to freshening and increased carbon uptake in response to sea ice retreat. Modeled saturation compares well with observation-based estimates along an Arctic transect and simulated changes have been corrected for remaining model-data differences in this region. Aragonite undersaturation in Arctic surface waters is projected to occur locally within a decade and to become more widespread as atmospheric CO2 continues to grow. The results imply that surface waters in the Arctic Ocean will become corrosive to aragonite, with potentially large implications for the marine ecosystem, if anthropogenic carbon emissions are not reduced and atmospheric CO2 not kept below 450 ppm.
  • Preprint
    Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms
    ( 2005-07-29) Orr, James C. ; Fabry, Victoria J. ; Aumont, Olivier ; Bopp, Laurent ; Doney, Scott C. ; Feely, Richard A. ; Gnanadesikan, Anand ; Gruber, Nicolas ; Ishida, Akio ; Joos, Fortunat ; Key, Robert M. ; Lindsay, Keith ; Maier-Reimer, Ernst ; Matear, Richard J. ; Monfray, Patrick ; Mouchet, Anne ; Najjar, Raymond G. ; Plattner, Gian-Kasper ; Rodgers, Keith B. ; Sabine, Christopher L. ; Sarmiento, Jorge L. ; Schlitzer, Reiner ; Slater, Richard D. ; Totterdell, Ian J. ; Weirig, Marie-France ; Yamanaka, Yasuhiro ; Yool, Andrew
    The surface ocean is everywhere saturated with respect to calcium carbonate (CaCO3). Yet increasing atmospheric CO2 reduces ocean pH and carbonate ion concentrations [CO32−] and thus the level of saturation. Reduced saturation states are expected to affect marine calcifiers even though it has been estimated that all surface waters will remain saturated for centuries. Here we show, however, that some surface waters will become undersaturated within decades. When atmospheric CO2 reaches 550 ppmv, in year 2050 under the IS92a business-as-usual scenario, Southern Ocean surface waters begin to become undersaturated with respect to aragonite, a metastable form of CaCO3. By 2100 as atmospheric CO2 reaches 788 ppmv, undersaturation extends throughout the entire Southern Ocean (< 60°S) and into the subarctic Pacific. These changes will threaten high-latitude aragonite secreting organisms including cold-water corals, which provide essential fish habitat, and shelled pteropods, an abundant food source for marine predators.
  • Article
    Spatiotemporal variability and long-term trends of ocean acidification in the California Current System
    (Copernicus Publications on behalf of the European Geosciences Union, 2013-01-14) Hauri, Claudine ; Gruber, Nicolas ; Vogt, Meike ; Doney, Scott C. ; Feely, Richard A. ; Lachkar, Z. ; Leinweber, A. ; McDonnell, Andrew M. P. ; Munnich, M. ; Plattner, Gian-Kasper
    Due to seasonal upwelling, the upper ocean waters of the California Current System (CCS) have a naturally low pH and aragonite saturation state (Ωarag), making this region particularly prone to the effects of ocean acidification. Here, we use the Regional Oceanic Modeling System (ROMS) to conduct preindustrial and transient (1995–2050) simulations of ocean biogeochemistry in the CCS. The transient simulations were forced with increasing atmospheric pCO2 and increasing oceanic dissolved inorganic carbon concentrations at the lateral boundaries, as projected by the NCAR CSM 1.4 model for the IPCC SRES A2 scenario. Our results show a large seasonal variability in pH (range of ~ 0.14) and Ωarag (~ 0.2) for the nearshore areas (50 km from shore). This variability is created by the interplay of physical and biogeochemical processes. Despite this large variability, we find that present-day pH and Ωarag have already moved outside of their simulated preindustrial variability envelopes (defined by ±1 temporal standard deviation) due to the rapidly increasing concentrations of atmospheric CO2. The nearshore surface pH of the northern and central CCS are simulated to move outside of their present-day variability envelopes by the mid-2040s and late 2030s, respectively. This transition may occur even earlier for nearshore surface Ωarag, which is projected to depart from its present-day variability envelope by the early- to mid-2030s. The aragonite saturation horizon of the central CCS is projected to shoal into the upper 75 m within the next 25 yr, causing near-permanent undersaturation in subsurface waters. Due to the model's overestimation of Ωarag, this transition may occur even earlier than simulated by the model. Overall, our study shows that the CCS joins the Arctic and Southern oceans as one of only a few known ocean regions presently approaching the dual threshold of widespread and near-permanent undersaturation with respect to aragonite and a departure from its variability envelope. In these regions, organisms may be forced to rapidly adjust to conditions that are both inherently chemically challenging and also substantially different from past conditions.
  • Preprint
    Eddy-resolving simulation of plankton ecosystem dynamics in the California Current System
    ( 2006-06-13) Gruber, Nicolas ; Frenzel, Hartmut ; Doney, Scott C. ; Marchesiello, Patrick ; McWilliams, James C. ; Moisan, John R. ; Oram, John J. ; Plattner, Gian-Kasper ; Stolzenbach, Keith D.
    We study the dynamics of the planktonic ecosystem in the coastal upwelling zone within the California Current System using a three-dimensional, eddy-resolving circulation model coupled to an ecosystem/biogeochemistry model. The physical model is based on the Regional Oceanic Modeling System (ROMS), configured at a resolution of 15 km for a domain covering the entire U.S. West Coast, with an embedded child grid covering the central California upwelling region at a resolution of 5 km. The model is forced with monthly mean boundary conditions at the open lateral boundaries as well as at the surface. The ecological/biogeochemical model is nitrogen based, includes single classes for phytoplankton and zooplankton, and considers two detrital pools with different sinking speeds. The model also explicitly simulates a variable chlorophyll-to-carbon ratio. Comparisons of model results with either remote sensing observations (AVHRR, SeaWiFS) or in situ measurements from the CalCOFI program indicate that our model is capable of replicating many of the large-scale, time averaged features of the coastal upwelling system. An exception is the underestimation of the chlorophyll levels in the northern part of the domain, perhaps because of the lack of short-term variations in the forcing from the atmosphere. Another shortcoming is that the modeled thermocline is too diffuse, and that the upward slope of the isolines toward the coast is too small. Detailed time-series comparisons with observations from Monterey Bay reveal similar agreements and discrepancies. We attribute the good agreement between the modeled and observed ecological properties in large part to the accuracy of the physical fields. In turn, many of the discrepancies can be traced back to our use of monthly mean forcing. Analysis of the ecosystem structure and dynamics reveal that the magnitude and pattern of phytoplankton biomass in the nearshore region are determined largely by the balance of growth and zooplankton grazing, while in the offshore region, growth is balanced by mortality. The latter appears to be inconsistent with in situ observations and is a result of our consideration of only one zooplankton size class (mesozooplankton), neglecting the importance of microzooplankton grazing in the offshore region. A comparison of the allocation of nitrogen into the different pools of the ecosystem in the 3-D results with those obtained from a box model configuration of the same ecosystem model reveals that only a few components of the ecosystem reach a local steady-state, i.e. where biological sources and sinks balance each other. The balances for the majority of the components are achieved by local biological source and sink terms balancing the net physical divergence, confirming the importance of the 3-D nature of circulation and mixing in a coastal upwelling system.
  • Article
    Evaluation of ocean carbon cycle models with data-based metrics
    (American Geophysical Union, 2004-04-02) Matsumoto, K. ; Sarmiento, Jorge L. ; Key, Robert M. ; Aumont, Olivier ; Bullister, John L. ; Caldeira, Ken ; Campin, J.-M. ; Doney, Scott C. ; Drange, Helge ; Dutay, J.-C. ; Follows, Michael J. ; Gao, Y. ; Gnanadesikan, Anand ; Gruber, Nicolas ; Ishida, Akio ; Joos, Fortunat ; Lindsay, Keith ; Maier-Reimer, Ernst ; Marshall, John C. ; Matear, Richard J. ; Monfray, Patrick ; Mouchet, Anne ; Najjar, Raymond G. ; Plattner, Gian-Kasper ; Schlitzer, Reiner ; Slater, Richard D. ; Swathi, P. S. ; Totterdell, Ian J. ; Weirig, Marie-France ; Yamanaka, Yasuhiro ; Yool, Andrew ; Orr, James C.
    New radiocarbon and chlorofluorocarbon-11 data from the World Ocean Circulation Experiment are used to assess a suite of 19 ocean carbon cycle models. We use the distributions and inventories of these tracers as quantitative metrics of model skill and find that only about a quarter of the suite is consistent with the new data-based metrics. This should serve as a warning bell to the larger community that not all is well with current generation of ocean carbon cycle models. At the same time, this highlights the danger in simply using the available models to represent the state-of-the-art modeling without considering the credibility of each model.
  • Article
    Evaluating global ocean carbon models : the importance of realistic physics
    (American Geophysical Union, 2004-09-15) Doney, Scott C. ; Lindsay, Keith ; Caldeira, Ken ; Campin, J.-M. ; Drange, Helge ; Dutay, J.-C. ; Follows, Michael J. ; Gao, Y. ; Gnanadesikan, Anand ; Gruber, Nicolas ; Ishida, Akio ; Joos, Fortunat ; Madec, G. ; Maier-Reimer, Ernst ; Marshall, John C. ; Matear, Richard J. ; Monfray, Patrick ; Mouchet, Anne ; Najjar, Raymond G. ; Orr, James C. ; Plattner, Gian-Kasper ; Sarmiento, Jorge L. ; Schlitzer, Reiner ; Slater, Richard D. ; Totterdell, Ian J. ; Weirig, Marie-France ; Yamanaka, Yasuhiro ; Yool, Andrew
    A suite of standard ocean hydrographic and circulation metrics are applied to the equilibrium physical solutions from 13 global carbon models participating in phase 2 of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2). Model-data comparisons are presented for sea surface temperature and salinity, seasonal mixed layer depth, meridional heat and freshwater transport, 3-D hydrographic fields, and meridional overturning. Considerable variation exists among the OCMIP-2 simulations, with some of the solutions falling noticeably outside available observational constraints. For some cases, model-model and model-data differences can be related to variations in surface forcing, subgrid-scale parameterizations, and model architecture. These errors in the physical metrics point to significant problems in the underlying model representations of ocean transport and dynamics, problems that directly affect the OCMIP predicted ocean tracer and carbon cycle variables (e.g., air-sea CO2 flux, chlorofluorocarbon and anthropogenic CO2 uptake, and export production). A substantial fraction of the large model-model ranges in OCMIP-2 biogeochemical fields (±25–40%) represents the propagation of known errors in model physics. Therefore the model-model spread likely overstates the uncertainty in our current understanding of the ocean carbon system, particularly for transport-dominated fields such as the historical uptake of anthropogenic CO2. A full error assessment, however, would need to account for additional sources of uncertainty such as more complex biological-chemical-physical interactions, biases arising from poorly resolved or neglected physical processes, and climate change.
  • Article
    Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean : results from Phase II of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2)
    (American Geophysical Union, 2007-08-08) Najjar, Raymond G. ; Jin, X. ; Louanchi, F. ; Aumont, Olivier ; Caldeira, Ken ; Doney, Scott C. ; Dutay, J.-C. ; Follows, Michael J. ; Gruber, Nicolas ; Joos, Fortunat ; Lindsay, Keith ; Maier-Reimer, Ernst ; Matear, Richard J. ; Matsumoto, K. ; Monfray, Patrick ; Mouchet, Anne ; Orr, James C. ; Plattner, Gian-Kasper ; Sarmiento, Jorge L. ; Schlitzer, Reiner ; Slater, Richard D. ; Weirig, Marie-France ; Yamanaka, Yasuhiro ; Yool, Andrew
    Results are presented of export production, dissolved organic matter (DOM) and dissolved oxygen simulated by 12 global ocean models participating in the second phase of the Ocean Carbon-cycle Model Intercomparison Project. A common, simple biogeochemical model is utilized in different coarse-resolution ocean circulation models. The model mean (±1σ) downward flux of organic matter across 75 m depth is 17 ± 6 Pg C yr−1. Model means of globally averaged particle export, the fraction of total export in dissolved form, surface semilabile dissolved organic carbon (DOC), and seasonal net outgassing (SNO) of oxygen are in good agreement with observation-based estimates, but particle export and surface DOC are too high in the tropics. There is a high sensitivity of the results to circulation, as evidenced by (1) the correlation of surface DOC and export with circulation metrics, including chlorofluorocarbon inventory and deep-ocean radiocarbon, (2) very large intermodel differences in Southern Ocean export, and (3) greater export production, fraction of export as DOM, and SNO in models with explicit mixed layer physics. However, deep-ocean oxygen, which varies widely among the models, is poorly correlated with other model indices. Cross-model means of several biogeochemical metrics show better agreement with observation-based estimates when restricted to those models that best simulate deep-ocean radiocarbon. Overall, the results emphasize the importance of physical processes in marine biogeochemical modeling and suggest that the development of circulation models can be accelerated by evaluating them with marine biogeochemical metrics.