Austin
James Murdoch
Austin
James Murdoch
No Thumbnail Available
2 results
Search Results
Now showing
1 - 2 of 2
-
BookCloudiness and precipitation in relation to frontal lifting and horizontal convergence(Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1943-08) Austin, James MurdochThe physical processes which result in the formation of clouds and the production of precipitation have been described by numerous meteorologists. The genetical classification has been summarized by Petterssen as follows: (1) Clouds and precipitation types which form in unstable air masses, (2) Clouds and precipitation types which form in stable air masses, (3) Clouds and precipitation types which form in connection with quasi-horizontal inversions in the free atmosphere, and (4) Frontal clouds and precipitation forms. In general, the procedure adopted for the forecasting of these meteorological elements can also be subdivided into the same four categories. Since the distribution of the elements in the atmosphere is never constant with time, the problem of forecasting cloudiness and precipitation is sometimes diffcult. A detailed discussion of qualitative and quantitative prognostic methods can be found in various standard meteorological texts. However, present methods are not entirely adequate and it is the aim of this investigation to contribute to the solution of the forecast problem. This study has been divided into two main sections, viz., (1) Clouds and precipitation types which occur at frontal surfaces as the result of frontal lifting, and (2) Clouds and precipitation types which occur within air masses as the result of horizontal convergence within the wind field. (1) Frontal Surfaces. In a recent study of fronts and frontogenesis, Petterssen and Austin have investigated the processes that tend to create wind shear, or vorticity, along fronts. It was found that, in general, an increase or decrease in shear is accompanied by a change in the vertical velocity field at a front. Since cloudiness and precipitation arise from the ascending velocities at frontal surfaces, the possibility of forecasting the change in horizontal shear at a front will be investigated. Furthermore, it has been shown that the vertical velocity of either air mass at a frontal surface can be determined from the velocity of the front and the horizontal wind velocity. The wind velocities in the free atmosphere can be obtained with a reasonable degree of accuracy, but the front velocity cannot always be evaluated with the same accuracy. Because it is important to determine the magnitude or at least the sign of the vertical velocities, a kinematical study will be made of the displacement of frontal surfaces. (2) Horizontal Convergence. In 1931 Giao published an explanation of the origin of clouds and precipitation in the vicinity of moving cyclones, without introducing the concept of frontal surfaces. Giao claimed that most condensation phenomena could be attributed to the cooling produced by local pressure changes and the horizontal convergence which arises from the meridional component of the wind velocity. The conclusions are conveniently summarized by Haurwitz, together with a short discussion of Giao's theory. Since some systems of clouds and precipitation types may result solely from convergence in the horizontal flow, an attempt wil be made to evaluate this effect quantitatively.
-
BookFronts and frontogenesis in relation to vorticity(Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1942-01) Petterssen, Sverre ; Austin, James MurdochSoon after the discovery of the polar front, it was realized that fronts were subject to processes which either increased or diminished their intensity. Thus, fronts may form in fields where the distributiori of the meteorological elements is continuous; and, in other cases, fronts may dissolve and develop into a field of continuous distribution of the various elements. The processes which lead to the formation of a front or the increase in intensity of an existing front, are called jrontogenetical processes; and the processes which lead to the dissolution of fronts are calledjrontolytical processes. In theoretical treatments of fronts it has been customary to simplify the problem by assuming that a frontal surface is a mathematical discontinuity, and doubts have been raised against the validity of this simplification. Petterssen has shown that both the dynamic and the kinematic boundary conditions that hold for perfect discontinuities hold also for layers of transition of finite thickness within which the meteorological elements vary continuously. We are, therefore, justified in treating frontal surfaces and fronts as either strict discontinuities or as finite layers of transition. Frontogenesis may therefore be defined as the process that tends to create a surface of discontinuity in the atmosphere. Whether or not this process results in a strict discontinuity is immaterial.