Orcutt
John A.
Orcutt
John A.
No Thumbnail Available
6 results
Search Results
Now showing
1 - 6 of 6
-
Working PaperReport of the Research Coordination Network RCN : OceanObsNetwork, facilitating open exchange of data and information(NSF/Ocean Research Coordination Network, 2013-05) Gallagher, James ; Orcutt, John A. ; Pissierssens, Peter ; Raymond, Lisa ; Simpson, Pauline ; Pearlman, Jay ; Williams, Albert J. ; Simpson, PaulineThe OceanObsNetwork goals and objectives are to foster a broad, multi-disciplinary dialogue, enabling more effective use of sustained ocean observatories and observing systems. To achieve these, the activities for the RCN include a working group titled “Facilitating Open Exchange of Data and Information.” Within this area 3 task teams were created dealing with elements that impact on open exchange of data and information. This report examines the foundation of Open Data and its importance to the international community, science, innovation and jobs. While the goal may be similar, the paths to Open Data are varied and drawing together a pervasive approach will take time. There are however, near term steps, technical and social, that could have significant impacts. Stimulating interdisciplinary collaboration occurs through adoption of common standards for data exchange, creation of information brokering for improved discovery and access and working toward common or defined vocabularies. Simply finding other scientists’ data has been noted as a major barrier for research. Open Data impinges on existing reward systems and social interactions. Areas that need to be addressed are the academic reward system (in terms of promotion and resources), the peer review panels and grant selection processes (in terms of acknowledging the importance and challenge of data collection) and the needs for acceptable citation mechanisms. Intellectual property should not be abandoned in an Open Data environment and managing IPR is necessary. A sustainable Open Data Policy is essential and sustainability is a matter for all parties, government, private sector, academia and non-profit organizations. As full implementation of Open Data will involve a change in practices in a number of research and publication activities, an end-to-end perspective and strategy would most likely allow a long-term sustainable path to be pursued. Various business models are discussed in the paper that would not have been considered a decade ago. These range from cloud storage to publication of data with Digital Object Identifiers. These set a possible foundation for the future.
-
ArticleMultipurpose acoustic networks in the integrated Arctic Ocean observing system(Arctic Institute of North America, 2015) Mikhalevsky, Peter N. ; Sagen, Hanne ; Worcester, Peter F. ; Baggeroer, Arthur B. ; Orcutt, John A. ; Moore, Sue E. ; Lee, Craig M. ; Vigness-Raposa, Kathleen J. ; Freitag, Lee E. ; Arrott, Matthew ; Atakan, Kuvvet ; Beszczynska-Möller, Agnieszka ; Duda, Timothy F. ; Dushaw, Brian D. ; Gascard, Jean-Claude ; Gavrilov, Alexander N. ; Keers, Henk ; Morozov, Andrey K. ; Munk, Walter H. ; Rixen, Michel ; Sandven, Stein ; Skarsoulis, Emmanuel ; Stafford, Kathleen M. ; Vernon, Frank L. ; Yuen, Mo YanThe dramatic reduction of sea ice in the Arctic Ocean will increase human activities in the coming years. This activity will be driven by increased demand for energy and the marine resources of an Arctic Ocean accessible to ships. Oil and gas exploration, fisheries, mineral extraction, marine transportation, research and development, tourism, and search and rescue will increase the pressure on the vulnerable Arctic environment. Technologies that allow synoptic in situ observations year-round are needed to monitor and forecast changes in the Arctic atmosphere-ice-ocean system at daily, seasonal, annual, and decadal scales. These data can inform and enable both sustainable development and enforcement of international Arctic agreements and treaties, while protecting this critical environment. In this paper, we discuss multipurpose acoustic networks, including subsea cable components, in the Arctic. These networks provide communication, power, underwater and under-ice navigation, passive monitoring of ambient sound (ice, seismic, biologic, and anthropogenic), and acoustic remote sensing (tomography and thermometry), supporting and complementing data collection from platforms, moorings, and vehicles. We support the development and implementation of regional to basin-wide acoustic networks as an integral component of a multidisciplinary in situ Arctic Ocean observatory.
-
ArticleAsymmetric shallow mantle structure beneath the Hawaiian Swell—evidence from Rayleigh waves recorded by the PLUME network(John Wiley & Sons, 2011-10-31) Laske, Gabi ; Markee, Amanda ; Orcutt, John A. ; Wolfe, Cecily J. ; Collins, John A. ; Solomon, Sean C. ; Detrick, Robert S. ; Bercovici, David ; Hauri, Erik H.We present models of the 3-D shear velocity structure of the lithosphere and asthenosphere beneath the Hawaiian hotspot and surrounding region. The models are derived from long-period Rayleigh-wave phase velocities that were obtained from the analysis of seismic recordings collected during two year-long deployments for the Hawaiian Plume-Lithosphere Undersea Mantle Experiment. For this experiment, broad-band seismic sensors were deployed at nearly 70 seafloor sites as well as 10 sites on the Hawaiian Islands. Our seismic images result from a two-step inversion of path-averaged dispersion curves using the two-station method. The images reveal an asymmetry in shear velocity structure with respect to the island chain, most notably in the lower lithosphere at depths of 60 km and greater, and in the asthenosphere. An elongated, 100-km-wide and 300-km-long low-velocity anomaly reaches to depths of at least 140 km. At depths of 60 km and shallower, the lowest velocities are found near the northern end of the island of Hawaii. No major velocity anomalies are found to the south or southeast of Hawaii, at any depth. The low-velocity anomaly in the asthenosphere is consistent with an excess temperature of 200–250 °C and partial melt at the level of a few percent by volume, if we assume that compositional variations as a result of melt extraction play a minor role. We also image small-scale low-velocity anomalies within the lithosphere that may be associated with the volcanic fields surrounding the Hawaiian Islands.
-
ArticleOcean Seismic Network Pilot Experiment( 2003-10-31) Stephen, Ralph A. ; Spiess, Fred N. ; Collins, John A. ; Hildebrand, John A. ; Orcutt, John A. ; Peal, Kenneth R. ; Vernon, Frank L. ; Wooding, Frank B.The primary goal of the Ocean Seismic Network Pilot Experiment (OSNPE) was to learn how to make high quality broadband seismic measurements on the ocean bottom in preparation for a permanent ocean seismic network. The experiment also had implications for the development of a capability for temporary (e.g., 1 year duration) seismic experiments on the ocean floor. Equipment for installing, operating and monitoring borehole observatories in the deep sea was also tested including a lead-in package, a logging probe, a wire line packer and a control vehicle. The control vehicle was used in three modes during the experiment: for observation of seafloor features and equipment, for equipment launch and recovery, and for power supply and telemetry between ocean bottom units and the ship. The OSNPE which was completed in June 1998 acquired almost four months of continuous data and it demonstrated clearly that a combination of shallow buried and borehole broadband sensors could provide comparable quality data to broadband seismic installations on islands and continents. Burial in soft mud appears to be adequate at frequencies below the microseism peak. Although the borehole sensor was subject to installation noise at low frequencies (0.6 to 50 mHz), analysis of the OSNPE data provides new insights into our understanding of ocean bottom ambient noise. The OSNPE results clearly demonstrate the importance of sediment borne shear modes in ocean bottom ambient noise behavior. Ambient noise drops significantly at high frequencies for a sensor placed just at the sediment basalt interface. At frequencies above the microseism peak, there are two reasons that ocean bottom stations have been generally regarded as noisier than island or land stations: ocean bottom stations are closer to the noise source (the surface gravity waves) and most ocean bottom stations to date have been installed on low rigidity sediments where they are subject to the effects of shear wave resonances. When sensors are placed in boreholes in basement the performance of ocean bottom seismic stations approaches that of continental and island stations. A broadband borehole seismic station should be included in any real-time ocean bottom observatory.
-
Working PaperProgress report on the development of the seafloor borehole array seismic system (phase II) : July 14, 1992 to January 31, 1996(Woods Hole Oceanographic Institution, 1996-06) Stephen, Ralph A. ; Peal, Kenneth R. ; Bolmer, S. Thompson ; Gould, Matthew R. ; Koelsch, Donald E. ; Orcutt, John A. ; Vernon, Frank L. ; Offield, G. ; Willoughby, David F. ; Hollinshead, C. B. ; Spiess, Fred N. ; Hildebrand, John A. ; Zimmerman, Richard ; Austin, GaryThe Seafloor Borehole Array Seismic System (SEABASS) was originally developed to record autonomously on the seafloor the signals received on a four-sonde three-component borehole geophone array in the VLF band (2-50Hz)(Stephen eta!., 1994). The system is designed to use the wireline re-entry capability (Spiess, 1993; Spiess eta!., 1992) to install and retrieve the seafloor instrumentation (Figures 1 and 2). Following the successful demonstration of this technology on the LFASE (Low Frequency Acoustic-Seismic Experiment) project in September 1989, it was decided to extend the capability to broadband (1000sec-5Hz) borehole seismometers which could be used for permanent seafloor seismic observatories in the Ocean Seismic Network (Orcutt and Stephen, 1993; Purdy and Dziewonski, 1988; Purdy and Orcutt, 1995; Stephen, 1995; Sutton and Barstow, 1990; Sutton eta!., 1988; Sutton eta!., 1965). The Broadband Borehole Seismic System (B3S2) is the prototype system for permanent broadband borehole seismic observatories on the seafloor. It has three major components: i) a broadband borehole seismometer, the Teledyne 54000, modified for seafloor operations by Scripps-IGPP; ii) the re-entry system provided by Scripps-MPL; and iii) the seafloor recording system developed by WHO I. Because of the similarity of the seafloor recording system to SEABASS we have named this new system SEABASS-ll. This report discusses the development of SEABASS-Il at WHOI in the period from July 14, 1992 to January 31, 1996. The motivation for the project and a work statement are contained in WHOI proposals 7016 and 7016.1. This report is a collection of documentation prepared while the work was being carried out. Some of the issues discussed in early memos were subsequently changed. Modifications and further testing of SEABASS-ll, as well as final system integration tests with the borehole andreentry systems (both of which are also still being modified and tested) have still to be carried out in preparation for the OSN Pilot Experiment Cruise in Spring 1997. This is a preliminary report only and presents work in progress. It will be useful to the engineering team as a historical reference of the sequence of events in the development of SEABASS-ll but it should not be considered as a technical manual for the instrumentation.
-
PreprintFacilitating open exchange of data and information( 2014-09-22) Gallagher, James ; Orcutt, John A. ; Simpson, Pauline ; Wright, Dawn J. ; Pearlman, Jay ; Raymond, LisaBy broad consensus, Open Data presents great value. However, beyond that simple statement, there are a number of complex, and sometimes contentious, issues that the science community must address. In this review, we examine the current state of the core issues of Open Data with the unique perspective and use cases of the ocean science community: interoperability; discovery and access; quality and fitness for purpose; and sustainability. The topics of Governance and Data Publication are also examined in detail. Each of the areas covered are, by themselves, complex and the approaches to the issues under consideration are often at odds with each other. Any comprehensive policy on Open Data will require compromises that are best resolved by broad community input. In the final section of the review, we provide recommendations that serve as a starting point for these discussions.