Kim Minkyoung

No Thumbnail Available
Last Name
Kim
First Name
Minkyoung
ORCID
0000-0003-2308-2814

Search Results

Now showing 1 - 2 of 2
  • Article
    Lithogenic particle transport trajectories on the Northwest Atlantic Margin
    (American Geophysical Union, 2020-12-04) Hwang, Jeomshik ; Blusztajn, Jerzy S. ; Giosan, Liviu ; Kim, Minkyoung ; Manganini, Steven J. ; Montluçon, Daniel ; Toole, John M. ; Eglinton, Timothy I.
    The neodymium isotopic composition of the detrital (lithogenic) fraction (εNd‐detrital) of surface sediments and sinking particles was examined to constrain transport trajectories associated with hemipelagic sedimentation on the northwest Atlantic margin. The provenance of resuspended sediments and modes of lateral transport in the water column were of particular interest given the energetic hydrodynamic regime that sustains bottom and intermediate nepheloid layers over the margin. A large across‐margin gradient of ∼5 εNd units was observed for surface sediments, implying strong contrasts in sediment provenance, with εNd‐detrital values on the lower slope similar to those of “upstream regions” (Scotian margin) under the influence of the Deep Western Boundary Current (DWBC). Sinking particles collected at three depths at a site (total water depth, ∼3,000 m) on the New England margin within the core of the DWBC exhibited a similarly large range in εNd‐detrital values. The εNd‐detrital values of particles intercepted at intermediate water depths (1,000 and 2,000 m) were similar to each other but significantly higher than those at 3,000 m (∼50 m above the seafloor). These observations suggest that lithogenic material accumulating in the upper two traps was primarily advected in intermediate nepheloid layers emanating from the adjacent shelf, while that at 3,000 m is strongly influenced by sediment resuspension and along‐margin, southward lateral transport within the bottom nepheloid layer via entrainment in the DWBC. Our results highlight the importance of both along‐ and across‐margin sediment transport as vectors for lithogenic material and associated organic carbon transport.
  • Article
    Temporal and spatial variability of particle transport in the deep Arctic Canada Basin
    (John Wiley & Sons, 2015-04-11) Hwang, Jeomshik ; Kim, Minkyoung ; Manganini, Steven J. ; McIntyre, Cameron P. ; Haghipour, Negar ; Park, Jong Jin ; Krishfield, Richard A. ; Macdonald, Robie W. ; McLaughlin, Fiona A. ; Eglinton, Timothy I.
    To better understand the current carbon cycle and potentially detect its change in the rapidly changing Arctic Ocean, we examined sinking particles collected quasi-continuously over a period of 7 years (2004–2011) by bottom-tethered sediment trap moorings in the central Canada Basin. Total mass flux was very low (<100 mg m−2 d−1) at all sites and was temporally decoupled from the cycle of primary production in surface waters. Extremely low radiocarbon contents of particulate organic carbon and high aluminum contents in sinking particles reveal high contributions of resuspended sediment to total sinking particle flux in the deep Canada Basin. Station A (75°N, 150°W) in the southwest quadrant of the Canada Basin is most strongly influenced while Station C (77°N, 140°W) in the northeast quadrant is least influenced by lateral particle supply based on radiocarbon content and Al concentration. The results at Station A, where three sediment traps were deployed at different depths, imply that the most likely mode of lateral particle transport was as thick clouds of enhanced particle concentration extending well above the seafloor. At present, only 1%–2% of the low levels of new production in Canada Basin surface waters reaches the interior basin. Lateral POC supply therefore appears to be the major source of organic matter to the interior basin. However, ongoing changes to surface ocean boundary conditions may influence both lateral and vertical supply of particulate material to the deep Canada Basin.