Dittmar Thorsten

No Thumbnail Available
Last Name
Dittmar
First Name
Thorsten
ORCID
0000-0002-3462-0107

Search Results

Now showing 1 - 3 of 3
  • Article
    Drivers of organic molecular signatures in the Amazon River
    (American Geophysical Union, 2021-06-11) Kurek, Martin ; Stubbins, Aron ; Drake, Travis W. ; Moura, José M. S. ; Holmes, Robert M. ; Osterholz, Helena ; Dittmar, Thorsten ; Peucker-Ehrenbrink, Bernhard ; Mitsuya, Miyuki ; Spencer, Robert G. M.
    As climate-driven El Niño Southern Oscillation (ENSO) events are projected to increase in frequency and severity, much attention has focused on impacts regarding ecosystem productivity and carbon balance in Amazonian rainforests, with comparatively little attention given to carbon dynamics in fluvial ecosystems. In this study, we compared the wet 2012 La Niña period to the following normal hydrologic period in the Amazon River. Elevated water flux during the La Niña period was accompanied by dilution of inorganic ion concentrations. Furthermore, the La Niña period exported 2.77 Tg C yr−1 more dissolved organic carbon (DOC) than the normal period, an increase greater than the annual amount of DOC exported by the Mississippi River. Using ultra-high-resolution mass spectrometry, we detected both intra- and interannual differences in dissolved organic matter (DOM) composition, revealing that DOM exported during the dry season and the normal period was more aliphatic, whereas compounds in the wet season and following the La Niña event were more aromatic, with ramifications for its environmental role. Furthermore, as this study has the highest temporal resolution DOM compositional data for the Amazon River to-date we showed that compounds were highly correlated to a 6-month lag in Pacific temperature and pressure anomalies, suggesting that ENSO events could impact DOM composition exported to the Atlantic Ocean. Therefore, as ENSO events increase in frequency and severity into the future it seems likely that there will be downstream consequences for the fate of Amazon Basin-derived DOM concurrent with lag periods as described here.
  • Article
    Analytical and computational advances, opportunities, and challenges in marine organic biogeochemistry in an era of "Omics"
    (Frontiers Media, 2020-09-02) Steen, Andrew D. ; Kusch, Stephanie ; Abdulla, Hussain A. ; Cakić, Nevenka ; Coffinet, Sarah ; Dittmar, Thorsten ; Fulton, James M. ; Galy, Valier ; Hinrichs, Kai-Uwe ; Ingalls, Anitra ; Koch, Boris P. ; Kujawinski, Elizabeth B. ; Liu, Zhanfei ; Osterholz, Helena ; Rush, Darci ; Seidel, Michael ; Sepulveda, Julio ; Wakeham, Stuart G.
    Advances in sampling tools, analytical methods, and data handling capabilities have been fundamental to the growth of marine organic biogeochemistry over the past four decades. There has always been a strong feedback between analytical advances and scientific advances. However, whereas advances in analytical technology were often the driving force that made possible progress in elucidating the sources and fate of organic matter in the ocean in the first decades of marine organic biogeochemistry, today process-based scientific questions should drive analytical developments. Several paradigm shifts and challenges for the future are related to the intersection between analytical progress and scientific evolution. Untargeted “molecular headhunting” for its own sake is now being subsumed into process-driven targeted investigations that ask new questions and thus require new analytical capabilities. However, there are still major gaps in characterizing the chemical composition and biochemical behavior of macromolecules, as well as in generating reference standards for relevant types of organic matter. Field-based measurements are now routinely complemented by controlled laboratory experiments and in situ rate measurements of key biogeochemical processes. And finally, the multidisciplinary investigations that are becoming more common generate large and diverse datasets, requiring innovative computational tools to integrate often disparate data sets, including better global coverage and mapping. Here, we compile examples of developments in analytical methods that have enabled transformative scientific advances since 2004, and we project some challenges and opportunities in the near future. We believe that addressing these challenges and capitalizing on these opportunities will ensure continued progress in understanding the cycling of organic carbon in the ocean.
  • Preprint
    Chemical dispersants can suppress the activity of natural oil-degrading microorganisms
    ( 2015-09) Kleindienst, Sara ; Seidel, Michael ; Ziervogel, Kai ; Grim, Sharon L. ; Loftis, Kathy ; Harrison, Sarah ; Malkin, Sairah Y. ; Perkins, Matthew J. ; Field, Jennifer ; Sogin, Mitchell L. ; Dittmar, Thorsten ; Passow, Uta ; Medeiros, Patricia M. ; Joye, Samantha B.
    During the Deepwater Horizon oil well blowout in the Gulf of Mexico, the application of 7 million liters of chemical dispersants aimed to stimulate microbial crude oil degradation by increasing the bioavailability of oil compounds. However, the effects of dispersants on oil biodegradation rates are debated. In laboratory experiments, we simulated environmental conditions comparable in the hydrocarbon-rich, 1100m deep, plume that formed during the Deepwater Horizon discharge. The presence of dispersant significantly altered the microbial community composition through selection for potential dispersant-degrading Colwellia, which also bloomed in situ in Gulf deep-waters during the discharge. In contrast, oil addition lacking dispersant stimulated growth of natural hydrocarbon-degrading Marinobacter. Dispersants did not enhance heterotrophic microbial activity or hydrocarbon oxidation rates. Extrapolating this comprehensive data set to real world scenarios questions whether dispersants stimulate microbial oil degradation in deep ocean waters and instead highlights that dispersants can exert a negative effect on microbial hydrocarbon degradation rates.