Charrassin Jean-Benoit

No Thumbnail Available
Last Name
Charrassin
First Name
Jean-Benoit
ORCID
0000-0003-1679-6974

Search Results

Now showing 1 - 3 of 3
  • Article
    Influence of environmental parameters on movements and habitat utilization of humpback whales (Megaptera novaeangliae) in the Madagascar breeding ground
    (The Royal Society, 2016-12-21) Trudelle, Laurène ; Cerchio, Salvatore ; Zerbini, Alexandre N. ; Geyer, Ygor ; Mayer, François-Xavier ; Jung, Jean-Luc ; Herve, Maxime R. ; Pous, Stephane ; Sallee, Jean-Baptiste ; Rosenbaum, Howard C. ; Adam, Olivier ; Charrassin, Jean-Benoit
    Assessing the movement patterns and key habitat features of breeding humpback whales is a prerequisite for the conservation management of this philopatric species. To investigate the interactions between humpback whale movements and environmental conditions off Madagascar, we deployed 25 satellite tags in the northeast and southwest coast of Madagascar. For each recorded position, we collated estimates of environmental variables and computed two behavioural metrics: behavioural state of ‘transiting’ (consistent/directional) versus ‘localized’ (variable/non-directional), and active swimming speed (i.e. speed relative to the current). On coastal habitats (i.e. bathymetry < 200 m and in adjacent areas), females showed localized behaviour in deep waters (191 ± 20 m) and at large distances (14 ± 0.6 km) from shore, suggesting that their breeding habitat extends beyond the shallowest waters available close to the coastline. Males' active swimming speed decreased in shallow waters, but environmental parameters did not influence their likelihood to exhibit localized movements, which was probably dominated by social factors instead. In oceanic habitats, both males and females showed localized behaviours in shallow waters and favoured high chlorophyll-a concentrations. Active swimming speed accounts for a large proportion of observed movement speed; however, breeding humpback whales probably exploit prevailing ocean currents to maximize displacement. This study provides evidence that coastal areas, generally subject to strong human pressure, remain the core habitat of humpback whales off Madagascar. Our results expand the knowledge of humpback whale habitat use in oceanic habitat and response to variability of environmental factors such as oceanic current and chlorophyll level.
  • Article
    Regional variation in winter foraging strategies by Weddell Seals in Eastern Antarctica and the Ross Sea
    (Frontiers Media, 2021-09-22) Harcourt, Robert ; Hindell, Mark ; McMahon, Clive R. ; Goetz, Kimberly T. ; Charrassin, Jean-Benoit ; Heerah, Karine ; Holser, Rachel R. ; Jonsen, Ian ; Shero, Michelle R. ; Hoenner, Xavier ; Foster, Rose ; Lenting, Baukje ; Tarszisz, Esther ; Pinkerton, Matthew H.
    The relative importance of intrinsic and extrinsic determinants of animal foraging is often difficult to quantify. The most southerly breeding mammal, the Weddell seal, remains in the Antarctic pack-ice year-round. We compared Weddell seals tagged at three geographically and hydrographically distinct locations in East Antarctica (Prydz Bay, Terre Adélie, and the Ross Sea) to quantify the role of individual variability and habitat structure in winter foraging behaviour. Most Weddell seals remained in relatively small areas close to the coast throughout the winter, but some dispersed widely. Individual utilisation distributions (UDi, a measure of the total area used by an individual seal) ranged from 125 to 20,825 km2. This variability was not due to size or sex but may be due to other intrinsic states for example reproductive condition or personality. The type of foraging (benthic vs. pelagic) varied from 56.6 ± 14.9% benthic dives in Prydz Bay through 42.1 ± 9.4% Terre Adélie to only 25.1 ± 8.7% in the Ross Sea reflecting regional hydrographic structure. The probability of benthic diving was less likely the deeper the ocean. Ocean topography was also influential at the population level; seals from Terre Adélie, with its relatively narrow continental shelf, had a core (50%) UD of only 200 km2, considerably smaller than the Ross Sea (1650 km2) and Prydz Bay (1700 km2). Sea ice concentration had little influence on the time the seals spent in shallow coastal waters, but in deeper offshore water they used areas of higher ice concentration. Marine Protected Areas (MPAs) in the Ross Sea encompass all the observed Weddell seal habitat, and future MPAs that include the Antarctic continental shelf are likely to effectively protect key Weddell seal habitat.
  • Article
    First description of in situ chlorophyll fluorescence signal within East Antarctic coastal polynyas during fall and winter
    (Frontiers Media, 2023-07-27) Bourreau, Lucie ; Pauthenet, Etienne ; Le Ster, Loic ; Picard, Baptiste ; Portela, Esther ; Salle, Jean-Baptiste ; McMahon, Clive R. ; Harcourt, Robert ; Hindell, Mark ; Guinet, Christophe ; Bestley, Sophie ; Charrassin, Jean-Benoit ; DuVivier, Alice ; Sylvester, Zephyr ; Krumhardt, Kristen ; Jenouvrier, Stephanie ; Labrousse, Sara
    Antarctic coastal polynyas are persistent and recurrent regions of open water located between the coast and the drifting pack-ice. In spring, they are the first polar areas to be exposed to light, leading to the development of phytoplankton blooms, making polynyas potential ecological hotspots in sea-ice regions. Knowledge on polynya oceanography and ecology during winter is limited due to their inaccessibility. This study describes i) the first in situ chlorophyll fluorescence signal (a proxy for chlorophyll-a concentration and thus presence of phytoplankton) in polynyas between the end of summer and winter, ii) assesses whether the signal persists through time and iii) identifies its main oceanographic drivers. The dataset comprises 698 profiles of fluorescence, temperature and salinity recorded by southern elephant seals in 2011, 2019-2021 in the Cape-Darnley (CDP;67˚S-69˚E) and Shackleton (SP;66˚S-95˚E) polynyas between February and September. A significant fluorescence signal was observed until April in both polynyas. An additional signal occurring at 130m depth in August within CDP may result from in situ growth of phytoplankton due to potential adaptation to low irradiance or remnant chlorophyll-a that was advected into the polynya. The decrease and deepening of the fluorescence signal from February to August was accompanied by the deepening of the mixed layer depth and a cooling and salinification of the water column in both polynyas. Using Principal Component Analysis as an exploratory tool, we highlighted previously unsuspected drivers of the fluorescence signal within polynyas. CDP shows clear differences in biological and environmental conditions depending on topographic features with higher fluorescence in warmer and saltier waters on the shelf compared with the continental slope. In SP, near the ice-shelf, a significant fluorescence signal in April below the mixed layer (around 130m depth), was associated with fresher and warmer waters. We hypothesize that this signal could result from potential ice-shelf melting from warm water intrusions onto the shelf leading to iron supply necessary to fuel phytoplankton growth. This study supports that Antarctic coastal polynyas may have a key role for polar ecosystems as biologically active areas throughout the season within the sea-ice region despite inter and intra-polynya differences in environmental conditions.