Houghton
Leah A.
Houghton
Leah A.
No Thumbnail Available
8 results
Search Results
Now showing
1 - 8 of 8
-
ArticleCO2 deposition over the multi-year ice of the western Weddell Sea(American Geophysical Union, 2006-07-13) Zemmelink, Hendrik J. ; Delille, Bruno ; Tison, Jean-Louis ; Hintsa, Eric J. ; Houghton, Leah A. ; Dacey, John W. H.Field measurements by eddy correlation (EC) indicate an average uptake of 0.6 g CO2 m−2 d−1 by the ice-covered western Weddell Sea in December 2004. At the same time, snow that covers ice floes of the western Weddell Sea becomes undersaturated with CO2 relative to the atmosphere during early summer. Gradients of CO2 from the ice to the atmosphere do not support significant diffusive fluxes and are not strong enough to explain the observed CO2 deposition. We hypothesize that the transport of air through the snow pack is controlled by turbulence and that undersaturation of CO2 is caused by biological productivity at the ice-snow and snow-atmosphere interface. The total carbon uptake by the multi-year ice zone of the western Weddell Sea in December could have been as high as 6.6 Tg C y−1.
-
PreprintTracing carbon flow through coral reef food webs using a compound-specific stable isotope approach( 2015-11) McMahon, Kelton W. ; Thorrold, Simon R. ; Houghton, Leah A. ; Berumen, Michael L.Coral reefs support spectacularly productive and diverse communities in tropical and sub26 tropical waters throughout the world’s oceans. Debate continues, however, on the degree to which reef biomass is supported by new water column production, benthic primary production, and recycled detrital carbon. We coupled compound-specific δ13C analyses with Bayesian mixing models to quantify carbon flow from primary producers to coral reef fishes across multiple feeding guilds and trophic positions in the Red Sea. Analyses of reef fishes with putative diets composed primarily of zooplankton (Amblyglyphidodon indicus), benthic macroalgae (Stegastes nigricans), reef-associated detritus (Ctenochaetus striatus), and coral tissue (Chaetodon trifascialis) confirmed that δ13C values of essential amino acids from all baseline carbon sources were both isotopically diagnostic and accurately recorded in consumer tissues. While all four source end-members contributed to the production of coral reef fishes in our study, a single source end-member often dominated dietary carbon assimilation of a given species, even for highly mobile, generalist top predators. Microbially-reworked detritus was an important secondary carbon source for most species. Seascape configuration played an important role in structuring resource utilization patterns. For instance, L. ehrenbergii, showed a significant shift from a benthic macroalgal food web on shelf reefs (71 ± 13% of dietary carbon) to a phytoplankton-based food web (72 ± 11%) on oceanic reefs. Our work provides insights into the roles that diverse carbon sources play in the structure and function of coral reef ecosystems and illustrates a powerful fingerprinting method to develop and test nutritional frameworks for understanding resource utilization.
-
PreprintStable isotope analyses of feather amino acids identify penguin migration strategies at ocean basin scales( 2017-07) Polito, Michael J. ; Hinke, Jefferson T. ; Hart, Tom ; Santos, Mercedes ; Houghton, Leah A. ; Thorrold, Simon R.Identifying the at-sea distribution of wide ranging 20 marine predators is critical to understanding their ecology. Advances in electronic tracking devices and intrinsic biogeochemical markers have greatly improved our ability to track animal movements on ocean-wide scales. Here we show that, in combination with direct tracking, stable carbon isotope analysis of essential amino acids in tail feathers provides the ability to track the movement patterns of two, wide-ranging penguin species over ocean basin scales. In addition, we use this isotopic approach across multiple breeding colonies in the Scotia Arc to evaluate migration trends at a regional scale that would be logistically challenging using direct tracking alone.
-
ArticleDimethylsulfide emissions over the multi-year ice of the western Weddell Sea(American Geophysical Union, 2008-03-20) Zemmelink, Hendrik J. ; Dacey, John W. H. ; Houghton, Leah A. ; Hintsa, Eric J. ; Liss, P. S.This study, conducted in December 2004, is the first to present observations of DMS in a snow pack covering the multi-year sea ice of the western Weddell Sea. The snow layer is important because it is the interface through which DMS needs to be transported in order to be emitted directly from the ice to the overlying atmosphere. High concentrations of DMS, up to 6000 nmol m−3, were found during the first weeks of December but concentrations sharply decline as late spring-early summer progresses. This implies that DMS contained in sea ice is efficiently vented through the snow into the atmosphere. Indeed, field measurements by relaxed eddy accumulation indicate an average release of 11 μmol DMS m−2 d−1 from the ice and snow throughout December.
-
ArticleEmission of dimethylsulfide from Weddell Sea leads(American Geophysical Union, 2005-12-10) Zemmelink, Hendrik J. ; Houghton, Leah A. ; Dacey, John W. H. ; Worby, A. P. ; Liss, P. S.The distribution of dimethylsulfide (DMS), dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide (DMSO) was examined in lead water in pack ice of the Weddell Sea. Samples were taken by pulling water into a syringe from a series of depths from 0.002 m to 4 m and deeper. Concentrations of DMS, DMSP and DMSO remained low throughout the water column relative to surface water, which was highly enriched. Concentrations of the major sulfur compounds increased by over an order of magnitude during periods with smooth surface water conditions. This increase coincided with a profound stratification of the water column, caused by a decrease in salinity of near surface water. We estimate that the DMS emission from leads and open water in Antarctic sea ice could contribute significantly to the yearly DMS flux from the Southern Ocean.
-
ArticleThe Iceland Greenland Seas Project(American Meteorological Society, 2019-09-27) Renfrew, Ian A. ; Pickart, Robert S. ; Vage, Kjetil ; Moore, G. W. K. ; Bracegirde, Thomas J. ; Elvidge, Andrew D. ; Jeansson, Emil ; Lachlan-Cope, Thomas ; McRaven, Leah T. ; Papritz, Lukas ; Reuder, Joachim ; Sodemann, Harald ; Terpstra, Annick ; Waterman, Stephanie N. ; Valdimarsson, Héðinn ; Weiss, Albert ; Almansi, Mattia ; Bahr, Frank B. ; Brakstad, Ailin ; Barrell, Christopher ; Brooke, Jennifer K. ; Brooks, Barbara J. ; Brooks, Ian M. ; Brooks, Malcolm E. ; Bruvik, Erik Magnus ; Duscha, Christiane ; Fer, Ilker ; Golid, H. M. ; Hallerstig, M. ; Hessevik, Idar ; Huang, Jie ; Houghton, Leah A. ; Jonsson, Steingrimur ; Jonassen, Marius ; Jackson, K. ; Kvalsund, K. ; Kolstad, Erik W. ; Konstali, K. ; Kristiansen, Jorn ; Ladkin, Russell ; Lin, Peigen ; Macrander, Andreas ; Mitchell, Alexandra ; Olafsson, H. ; Pacini, Astrid ; Payne, Chris ; Palmason, Bolli ; Perez-Hernandez, M. Dolores ; Peterson, Algot K. ; Petersen, Guðrún N. ; Pisareva, Maria N. ; Pope, James O. ; Seidl, Andrew D. ; Semper, Stefanie ; Sergeev, Denis ; Skjelsvik, Silje ; Søiland, Henrik ; Smith, D. ; Spall, Michael A. ; Spengler, Thomas ; Touzeau, Alexandra ; Tupper, George H. ; Weng, Y. ; Williams, Keith D. ; Yang, Xiaohau ; Zhou, ShenjieThe Iceland Greenland Seas Project (IGP) is a coordinated atmosphere–ocean research program investigating climate processes in the source region of the densest waters of the Atlantic meridional overturning circulation. During February and March 2018, a field campaign was executed over the Iceland and southern Greenland Seas that utilized a range of observing platforms to investigate critical processes in the region, including a research vessel, a research aircraft, moorings, sea gliders, floats, and a meteorological buoy. A remarkable feature of the field campaign was the highly coordinated deployment of the observing platforms, whereby the research vessel and aircraft tracks were planned in concert to allow simultaneous sampling of the atmosphere, the ocean, and their interactions. This joint planning was supported by tailor-made convection-permitting weather forecasts and novel diagnostics from an ensemble prediction system. The scientific aims of the IGP are to characterize the atmospheric forcing and the ocean response of coupled processes; in particular, cold-air outbreaks in the vicinity of the marginal ice zone and their triggering of oceanic heat loss, and the role of freshwater in the generation of dense water masses. The campaign observed the life cycle of a long-lasting cold-air outbreak over the Iceland Sea and the development of a cold-air outbreak over the Greenland Sea. Repeated profiling revealed the immediate impact on the ocean, while a comprehensive hydrographic survey provided a rare picture of these subpolar seas in winter. A joint atmosphere–ocean approach is also being used in the analysis phase, with coupled observational analysis and coordinated numerical modeling activities underway.
-
ArticleGradients in dimethylsulfide, dimethylsulfoniopropionate, dimethylsulfoxide, and bacteria near the sea surface(Inter-Research, 2005-06-23) Zemmelink, Hendrik J. ; Houghton, Leah A. ; Sievert, Stefan M. ; Frew, Nelson M. ; Dacey, John W. H.Gradients of dimethylsulfide (DMS), dimethylsulfoniopropionate (DMSP), dimethylsulfoxide (DMSO), and bacterial numbers and diversity from the surface microlayer to 500 cm depth were assessed in coastal waters surrounding the Martha’s Vineyard Coastal Observatory, Massachusetts, USA. Microlayer samples were collected with a surface skimmer: a partially submerged, rotating glass cylinder (‘drum’) that allows the collection of a thin layer of water by adherence to the drum. A depletion of DMS towards the water surface (10 cm) was found at all sampling days, with largest gradients during rough sea surface conditions. The steep gradients show that gas fluxes and transfer velocities, based on the concentration disequilibrium between the water and the atmosphere, need to be based on near surface gas concentration values. Elevated DMSP, DMSO concentrations and bacterial numbers were found at the sea surface during calm conditions. Although degassing and photo-oxidation on the skimmer will bias the microlayer data, the results indicate stratification of DMSP, DMSO and bacteria during periods of smooth sea surface conditions.
-
ArticleCompound-specific stable isotope analysis of amino acids in pelagic shark vertebrae reveals baseline, trophic, and physiological effects on bulk protein isotope records(Frontiers Media, 2021-09-01) Magozzi, Sarah ; Thorrold, Simon R. ; Houghton, Leah A. ; Bendall, Victoria A. ; Hetherington, Stuart ; Mucientes, Gonzalo ; Natanson, Lisa J. ; Queiroz, Nuno ; Santos, Miguel N. ; Trueman, Clive N.Variations in stable carbon and nitrogen isotope compositions in incremental tissues of pelagic sharks can be used to infer aspects of their spatial and trophic ecology across life-histories. Interpretations from bulk tissue isotopic compositions are complicated, however, because multiple processes influence these values, including variations in primary producer isotope ratios and consumer diets and physiological processing of metabolites. Here we challenge inferences about shark tropho-spatial ecology drawn from bulk tissue isotope data using data for amino acids. Stable isotope compositions of individual amino acids can partition the isotopic variance in bulk tissue into components associated with primary production on the one hand, and diet and physiology on the other. The carbon framework of essential amino acids (EAAs) can be synthesised de novo only by plants, fungi and bacteria and must be acquired by consumers through the diet. Consequently, the carbon isotopic composition of EAAs in consumers reflects that of primary producers in the location of feeding, whereas that of non-essential amino acids (non-EAAs) is additionally influenced by trophic fractionation and isotope dynamics of metabolic processing. We determined isotope chronologies from vertebrae of individual blue sharks and porbeagles from the North Atlantic. We measured carbon and nitrogen isotope compositions in bulk collagen and carbon isotope compositions of amino acids. Despite variability among individuals, common ontogenetic patterns in bulk isotope compositions were seen in both species. However, while life-history movement inferences from bulk analyses for blue sharks were supported by carbon isotope data from essential amino acids, inferences for porbeagles were not, implying that the observed trends in bulk protein isotope compositions in porbeagles have a trophic or physiological explanation, or are suprious effects. We explored variations in carbon isotope compositions of non-essential amino acids, searching for systematic variations that might imply ontogenetic changes in physiological processing, but patterns were highly variable and did not explain variance in bulk protein δ13C values. Isotopic effects associated with metabolite processing may overwhelm spatial influences that are weak or inconsistently developed in bulk tissue isotope values, but interpreting mechanisms underpinning isotopic variation in patterns in non-essential amino acids remains challenging.