Favorito Julia E.

No Thumbnail Available
Last Name
Favorito
First Name
Julia E.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Observations and modeling of a hydrothermal plume in Yellowstone Lake
    (American Geophysical Union, 2019-05-09) Sohn, Robert A. ; Luttrell, Karen M. ; Shroyer, Emily L. ; Stranne, Christian ; Harris, Robert N. ; Favorito, Julia E.
    Acoustic Doppler current profiler and conductivity‐temperature‐depth data acquired in Yellowstone Lake reveal the presence of a buoyant plume above the “Deep Hole” hydrothermal system, located southeast of Stevenson Island. Distributed venting in the ~200 × 200‐m hydrothermal field creates a plume with vertical velocities of ~10 cm/s in the mid‐water column. Salinity profiles indicate that during the period of strong summer stratification the plume rises to a neutral buoyancy horizon at ~45‐m depth, corresponding to a ~70‐m rise height, where it generates an anomaly of ~5% (−0.0014 psu) relative to background lake water. We simulate the plume with a numerical model and find that a heat flux of 28 MW reproduces the salinity and vertical velocity observations, corresponding to a mass flux of 1.4 × 103 kg/s. When observational uncertainties are considered, the heat flux could range between 20 to 50 MW.
  • Article
    Heat flux from a vapor-dominated hydrothermal field beneath Yellowstone Lake
    (American Geophysical Union, 2021-05-14) Favorito, Julia E. ; Harris, Robert N. ; Sohn, Robert A. ; Hurwitz, Shaul ; Luttrell, Karen M.
    We report results from 149 heat flux measurements made over an ∼2-year interval at sites in and around a vapor-dominated geothermal field located at water depths of ∼100–120 m in Yellowstone Lake, Wyoming. Measurements of both in situ temperature and thermal conductivity as a function of depth were made with a 1 m probe via a remotely operated vehicle, and are combined to compute the vertical conductive heat flux. Inside the ∼55.5 × 103 m2 bathymetric depression demarcating the vapor-dominated field, the median conductive flux is 13 W m−2, with a conductive output of 0.72 MW. Outside the thermal field, the median conductive flux is 3.5 W m−2. We observed 49 active vents inside the thermal field, with an estimated mass discharge rate of 56 kg s−1, a median exit-fluid temperature of 132°C, and a total heat output of 29 MW. We find evidence for relatively weak secondary convection with a total output of 0.09 MW in thermal area lake floor sediments. Our data indicate that vapor beneath the thermal field is trapped by a low-permeability cap at a temperature of ∼189°C and a depth of ∼15 m below the lake floor. The thermal output of the Deep Hole is among the highest of any vapor-dominated field in Yellowstone, due in part to the high boiling temperatures associated with the elevated lake floor pressures.