Knowlton
Nancy
Knowlton
Nancy
No Thumbnail Available
2 results
Search Results
Now showing
1 - 2 of 2
-
DatasetGenBank accession links of the invertebrates collected from Autonomous Reef Monitoring Structures (ARMS) from shallow fringing reefs near Dobu and Upa Upasina, Milne Bay Province, Papua New Guinea in 2014(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2022-06-08) Knowlton, Nancy ; Plaisance, LaetitiaThis dataset contains GenBank accession links of the invertebrates collected in April and November of 2014 from Autonomous Reef Monitoring Structures (ARMS) on the acidification gradient from shallow fringing reefs near Dobu and Upa Upasina, Milne Bay Province, Papua New Guinea. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/874478
-
ArticleFormation of the Isthmus of Panama(American Association for the Advancement of Science, 2016-08-17) O’Dea, Aaron ; Lessios, Harilaos ; Coates, Anthony ; Eytan, Ron I. ; Restrepo-Moreno, Sergio A. ; Cione, Alberto L. ; Collins, Laurel S. ; de Queiroz, Alan ; Farris, David W. ; Norris, Richard D. ; Stallard, Robert ; Woodburne, Michael ; Aguilera, Orangel ; Aubry, Marie-Pierre ; Berggren, William A. ; Budd, Ann F. ; Cozzuol, Mario A. ; Coppard, Simon E. ; Duque-Caro, Hermann ; Finnegan, Seth ; Gasparini, Germán M. ; Grossman, Ethan L. ; Johnson, Kenneth G. ; Keigwin, Lloyd D. ; Knowlton, Nancy ; Leigh, Egbert G. ; Leonard-Pingel, Jill S. ; Marko, Peter B. ; Pyenson, Nicholas ; Rachello-Dolmen, Paola G. ; Soibelzon, Esteban ; Soibelzon, Leopoldo ; Todd, Jonathan A. ; Vermeij, Geerat J. ; Jackson, Jeremy B. C.The formation of the Isthmus of Panama stands as one of the greatest natural events of the Cenozoic, driving profound biotic transformations on land and in the oceans. Some recent studies suggest that the Isthmus formed many millions of years earlier than the widely recognized age of approximately 3 million years ago (Ma), a result that if true would revolutionize our understanding of environmental, ecological, and evolutionary change across the Americas. To bring clarity to the question of when the Isthmus of Panama formed, we provide an exhaustive review and reanalysis of geological, paleontological, and molecular records. These independent lines of evidence converge upon a cohesive narrative of gradually emerging land and constricting seaways, with formation of the Isthmus of Panama sensu stricto around 2.8 Ma. The evidence used to support an older isthmus is inconclusive, and we caution against the uncritical acceptance of an isthmus before the Pliocene.