Monteleone
Brian D.
Monteleone
Brian D.
No Thumbnail Available
Search Results
Now showing
1 - 9 of 9
-
ArticleHalogen (F, Cl) concentrations and Sr-Nd-Pb-B isotopes of the basaltic andesites from the southern Okinawa Trough: implications for the recycling of subducted serpentinites(American Geophysical Union, 2021-03-12) Zhang, Yuxiang ; Gaetani, Glenn A. ; Zeng, Zhigang ; Monteleone, Brian D. ; Yin, Xuebo ; Wang, Xiaoyuan ; Chen, ShuaiSerpentinites are increasingly recognized as playing an important role in the global geochemical cycle. However, discriminating the contributions of serpentinites to arc magmas from those of other subduction components is challenging. The Okinawa Trough is a back-arc basin developed behind the Ryukyu subduction zone, where magmas are extensively affected by sediment subduction. In this study, we reported the F-Cl concentrations and Sr-Nd-Pb-B isotopes of basaltic andesites from the Yaeyama Graben, Yonaguni Graben, and Irabu Knoll in the southern Okinawa Trough. The Irabu Knoll lavas show the most enrichment of fluid-mobile elements and F ± Cl, and have the heaviest B isotopes (δ11B: +6.6 ± 1.5‰). They also have decoupled Sr-Nd isotopes: higher 87Sr/86Sr (∼0.7049) but have no obvious decrease of 143Nd/144Nd (∼0.5128). Results from slab dehydration modeling and mixing calculations suggest that the heavy δ11B in the Irabu Knoll lavas is not consistent with fluids derived from altered oceanic crust (AOC), sediments, or wedge serpentinites (formed in the mantle wedge), but rather from slab serpentinites (formed within the subducting plate); sediments control the subduction input of Nd, whereas the decoupled Sr-Nd isotopes are most likely due to the excess radiogenic Sr carried by AOC fluids. Our results imply that recycling of serpentinite fluids and AOC fluids are usually coupled in subduction zones, as the arc lavas influenced by subducted serpentinite generally show Sr-Nd isotopes decoupling. The large variation of Sr-Nd-B isotopes observed in a relatively localized area is consistent with a focused migration through the mantle wedge of components from multiple sources.
-
ArticleAccuracy and reproducibility of coral Sr/Ca SIMS timeseries in modern and fossil corals(American Geophysical Union, 2022-08-17) Sayani, Hussein R. ; Cobb, Kim M. ; Monteleone, Brian D. ; Bridges, HeatherCoral strontium-to-calcium ratios (Sr/Ca) provide quantitative estimates of past sea surface temperatures (SST) that allow for the reconstruction of changes in the mean state and climate variations, such as the El Nino-Southern Oscillation, through time. However, coral Sr/Ca ratios are highly susceptible to diagenesis, which can impart artifacts of 1–2°C that are typically on par with the tropical climate signals of interest. Microscale sampling via Secondary Ion Mass Spectrometry (SIMS) for the sampling of primary skeletal material in altered fossil corals, providing much-needed checks on fossil coral Sr/Ca-based paleotemperature estimates. In this study, we employ a set modern and fossil corals from Palmyra Atoll, in the central tropical Pacific, to quantify the accuracy and reproducibility of SIMS Sr/Ca analyses relative to bulk Sr/Ca analyses. In three overlapping modern coral samples, we reproduce bulk Sr/Ca estimates within ±0.3% (1σ). We demonstrate high fidelity between 3-month smoothed SIMS coral Sr/Ca timeseries and SST (R = −0.5 to −0.8; p < 0.5). For lightly-altered sections of a young fossil coral from the early-20th century, SIMS Sr/Ca timeseries reproduce bulk Sr/Ca timeseries, in line with our results from modern corals. Across a moderately-altered section of the same fossil coral, where diagenesis yields bulk Sr/Ca estimates that are 0.6 mmol too high (roughly equivalent to −6°C artifacts in SST), SIMS Sr/Ca timeseries track instrumental SST timeseries. We conclude that 3–4 SIMS analyses per month of coral growth can provide a much-needed quantitative check on the accuracy of fossil coral Sr/Ca-derived estimates of paleotemperature, even in moderately altered samples.
-
ArticleB content and Si/C ratios from cultured diatoms (Thalassiosira pseudonana and Thalassiosira weissflogii) : relationship to seawater pH and diatom carbon acquisition(Elsevier, 2013-06-18) Mejia, Luz Maria ; Isensee, Kirsten ; Mendez-Vicente, Ana ; Pisonero, Jorge ; Shimizu, Nobumichi ; Gonzalez, Cristina ; Monteleone, Brian D. ; Stoll, Heather M.Despite the importance of diatoms in regulating climate and the existence of large opal-containing sediments in key air-ocean exchange areas, most geochemical proxy records are based on carbonates. Among them, Boron (B) content and isotopic composition have been widely used to reconstruct pH from foraminifera and coral fossils. We assessed the possibility of a pH/CO2 seawater concentration control on B content in diatom opal to determine whether or not frustule B concentrations could be used as a pH proxy or to clarify algae physiological responses to acidifying pH. We cultured two well-studied diatom species, Thalassiosira pseudonana and Thalassiosira weissflogii at varying pH conditions and determined Si and C quotas. Frustule B content was measured by both laser-ablation inductively coupled mass spectrometry (LA-ICPMS) and secondary ion mass spectrometry (SIMS/ion probe). For both species, frustules grown at higher pH have higher B contents and higher Si requirements per fixed C. If this trend is representative of diatom silicification in a future more acidic ocean, it could contribute to changes in the efficiency of diatom ballasting and C export, as well as changes in the contribution of diatoms relative to other phytoplankton groups in Si-limited regions. If B enters the cell through the same transporter employed for HCO3− uptake, an increased HCO3− requirement with decreasing CO2 concentrations (higher pH), and higher B(OH)4/HCO3− ratios would explain the observed increase in frustule B content with increasing pH. The mechanism of B transport from the site of uptake to the site of silica deposition is unknown, but may occur via silicon transport vesicles, in which B(OH)4− may be imported for B detoxification and/or as part of a pH regulation strategy either though Na-dependent B(OH)4−/Cl− antiport or B(OH)4−/H+ antiport. B deposition in the silica matrix may occur via substitution of a B(OH)4− for a negatively charged SiO− formed during silicification. With the current analytical precision, B content of frustules is unlikely to resolve ocean pH with a precision of paleoceanographic interest. However, if frustule B content was controlled mainly by HCO3− uptake for photosynthesis, which appears to show a threshold behavior, then measurements of B content might reveal the varying importance of active HCO3− acquisition mechanisms of diatoms in the past.
-
ArticleEfficient release of bromine by super-eruptions(Geological Society of America, 2021-07-30) Waelkens, Clara M. ; Stix, John ; Monteleone, Brian D. ; Burckel, PierreBromine is a key halogen element in the quantification of volcanic volatiles, but analytical difficulties in measuring its very low abundances have prevented progress in understanding its behavior and its role in volcanic emissions. We present a new data set of bromine, chlorine, and fluorine concentrations in melt inclusions and matrix glasses for two rhyolitic super-eruptions from the Toledo and Valles calderas, New Mexico, USA. We show that before eruption, Br and Cl were efficiently partitioned from the gas-saturated magma into a separate fluid phase, and we calculate the mass of halogens in the fluid phase. We further demonstrate that syn-eruptive magma degassing was negligible during the super-eruptions, so that the main source of halogen emissions must have been the fluid phase. If the fluid phase were erupted, the large mass of Br and Cl could have severely impacted the atmospheric chemistry upon eruption.
-
PreprintBoron isotope analysis of silicate glass with very low boron concentrations by secondary ion mass spectrometry( 2014-02) Marschall, Horst R. ; Monteleone, Brian D.Here we present an improved method for the determination of the boron isotopic composition of volcanic glasses with boron concentrations of as low as 0.4–2.5 μg g−1, as is typical for mid-ocean ridge basalt glasses. The analyses were completed by secondary ion mass spectrometry using a Cameca 1280 large-radius ion microprobe. Transmission and stability of the instrument and analytical protocol were optimised, which led to an improvement of precision and reduction in surface contamination and analysis time compared with earlier studies. Accuracy, reproducibility (0.4–2.3‰, 2 RSD), measurement repeatability (2 RSE = 2.5–4.0‰ for a single spot with [B] = 1 μg g−1), matrix effects (≪ 0.5‰ among komatiitic, dacitic and rhyolitic glass), machine drift (no internal drift; long-term drift: ~ 0.1‰ hr−1), contamination (~ 3–8 ng g−1) and machine background (0.093 s−1) were quantified and their influence on samples with low B concentrations was determined. The newly developed set-up was capable of determining the B isotopic composition of basaltic glass with 1 μg g−1 B with a precision and accuracy of ± 1.5‰ (2 RSE) by completing 4–5 consecutive spot analyses with a spatial resolution of 30 μm × 30 μm. Samples with slightly higher concentrations (≥ 2.5 μg g−1) could be analysed with a precision of better than ± 2‰ (internal 2 RSE) with a single spot analysis, which took 32 min.
-
ArticleLaser (U-Th)/He thermochronology of detrital zircons as a tool for studying surface processes in modern catchments(John Wiley & Sons, 2013-07-26) Tripathy-Lang, Alka ; Hodges, Kip V. ; Monteleone, Brian D. ; van Soest, Matthijs C.Detrital mineral thermochronology of modern sediments is a valuable tool for interrogating landscape evolution. Detrital zircon (U-Th)/He thermochronology is of particular interest because zircons are durable and withstand transport in glacial and fluvial systems far better than, for example, apatite. However, because of the time-intensive nature of conventional zircon (U-Th)/He thermochronology, most previous studies of this kind have relied on data for a few tens of grains, even though conventional wisdom holds that a substantially larger number is necessary for a robust characterization of the population of cooling ages in a sample. Here, we introduce a microanalytical approach to detrital zircon (U-Th)/He thermochronology that addresses many factors that can complicate the interpretation of conventional zircon (U-Th)/He data, particularly with respect to alpha ejection and injection and U + Th zoning. In addition, this technique permits the effective dating of naturally abraded and broken grains, and, therefore, lessens the potential for sampling bias. We apply both conventional and laser microprobe techniques to a detrital sample from the Ladakh Range in the northwestern Indian Himalaya, showing that the two yield very similar principal modes of apparent ages. However, the laser microprobe data yield a broader spectrum of ages than that of the conventional data set, which we interpret to be caused by bias related to the selection requirements for zircons used for conventional dating. This method thus provides a time-efficient route to obtaining a higher-resolution distribution of dates from a single sample, which will, in turn, yield higher-fidelity constraints regarding catchment-wide erosion rates for surface process studies.
-
ArticlePostmelting hydrogen enrichment in the oceanic lithosphere(American Association for the Advancement of Science, 2021-06-09) Le Roux, Véronique ; Urann, Benjamin M. ; Brunelli, Daniele ; Bonatti, Enrico ; Cipriani, Anna ; Demouchy, Sylvie ; Monteleone, Brian D.The large range of H2O contents recorded in minerals from exhumed mantle rocks has been challenging to interpret, as it often records a combination of melting, metasomatism, and diffusional processes in spatially isolated samples. Here, we determine the temporal variations of H2O contents in pyroxenes from a 24-Ma time series of abyssal peridotites exposed along the Vema fracture zone (Atlantic Ocean). The H2O contents of pyroxenes correlate with both crustal ages and pyroxene chemistry and increase toward younger and more refractory peridotites. These variations are inconsistent with residual values after melting and opposite to trends often observed in mantle xenoliths. Postmelting hydrogen enrichment occurred by ionic diffusion during cryptic metasomatism of peridotite residues by low-degree, volatile-rich melts and was particularly effective in the most depleted peridotites. The presence of hydrous melts under ridges leads to widespread hydrogen incorporation in the oceanic lithosphere, likely lowering mantle viscosity compared to dry models.
-
PreprintThe boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle( 2017-03-17) Marschall, Horst R. ; Wanless, V. Dorsey ; Shimizu, Nobumichi ; Pogge von Strandmann, Philip ; Elliott, Tim ; Monteleone, Brian D.A global selection of 56 mid-ocean ridge basalt (MORB) glasses were analysed for Li and B abundances and isotopic compositions. Analytical accuracy and precision of analyses constitute an improvement over previously published MORB data and allow a more detailed discussion of the Li and B systematics of the crust-mantle system. Refined estimates for primitive mantle abundances ([Li]=1.39±0.10[Li]=1.39±0.10 μg/g and [B]=0.19±0.02[B]=0.19±0.02 μg/g) and depleted mantle abundances ([Li]=1.20±0.10[Li]=1.20±0.10 μg/g and [B]=0.077±0.010[B]=0.077±0.010 μg/g) are presented based on mass balance and on partial melting models that utilise observed element ratios in MORB. Assimilation of seawater (or brine) or seawater-altered material beneath the ridge, identified by high Cl/KCl/K, causes significant elevation of MORB δ11Bδ11B and variable elevation in δ7Liδ7Li. The B isotope ratio is, hence, identified as a reliable indicator of assimilation in MORB and values higher than −6‰ are strongly indicative of shallow contamination of the magma. The global set of samples investigated here were produced at various degrees of partial melting and include depleted and enriched MORB from slow and fast-spreading ridge segments with a range of radiogenic isotope signatures and trace element compositions. Uncontaminated (low-Cl/KCl/K) MORB show no significant boron isotope variation at the current level of analytical precision, and hence a homogenous B isotopic composition of δ11B=-7.1±0.9‰δ11B=-7.1±0.9‰ (mean of six ridge segments; 2SD). Boron isotope fractionation during mantle melting and basalt fractionation likely is small, and this δ11Bδ11B value reflects the B isotopic composition of the depleted mantle and the bulk silicate Earth, probably within ±0.4‰. Our sample set shows a mean δ7Li=+3.5±1.0‰δ7Li=+3.5±1.0‰ (mean of five ridge segments; 2SD), excluding high-Cl/KCl/K samples. A significant variation of 1.0–1.5‰ exists among various ridge segments and among samples within individual ridge segments, but this variation is unrelated to differentiation, assimilation or mantle source indicators, such as radiogenic isotopes or trace elements. It, therefore, seems likely that kinetic fractionation of Li isotopes during magma extraction, transport and storage may generate δ7Liδ7Li excursions in MORB. No mantle heterogeneities, such as those generated by deeply recycled subducted materials, are invoked in the interpretation of the Li and B isotope data presented here, in contrast to previous work on smaller data sets. Lithium and boron budgets for the silicate Earth are presented that are based on isotope and element mass balance. A refined estimate for the B isotopic composition of the bulk continental crust is given as δ11B=-9.1±2.4‰δ11B=-9.1±2.4‰. Mass balance allows the existence of recycled B reservoirs in the deep mantle, but these are not required. However, mass balance among the crust, sediments and seawater shows enrichment of 6Li6Li in the surface reservoirs, which requires the existence of 7Li7Li-enriched material in the mantle. This may have formed by the subduction of altered oceanic crust since the Archaean.
-
ArticleOceanic intraplate explosive eruptions fed directly from the mantle(National Academy of Sciences, 2023-08-07) DeVitre, Charlotte L. ; Gazel, Esteban ; Ramalho, Ricardo S. ; Venugopal, Swetha ; Steele-MacInnis, Matthew ; Hua, Junlin ; Allison, Chelsea M. ; Moore, Lowell R. ; Carlos Carracedo, JuMonteleone, BrianConstraining the volatile content of magmas is critical to our understanding of eruptive processes and their deep Earth cycling essential to planetary habitability [R. Dasgupta, M. M. Hirschmann, Earth Planet. Sci. Lett. 298, 1 (2010)]. Yet, much of the work thus far on magmatic volatiles has been dedicated to understanding their cycling through subduction zones. Further, studies of intraplate mafic volcanism have disproportionately focused on Hawaii [P. E. Wieser et al., Geochem. Geophys. Geosyst. 22, e2020GC009364 (2021)], making assessments of the overall role of intraplate volcanoes in the global volatile cycles a challenge. Additionally, while mafic volcanoes are the most common landform on Earth and the Solar System [C. A. Wood, J. Volcanol. Geotherm. Res. 7, 387–413 (1980)], they tend to be overlooked in favor of silicic volcanoes when it comes to their potential for explosivity. Here, we report primitive (olivine-hosted, with host Magnesium number – Mg# 78 to 88%) melt inclusion (MI) data from Fogo volcano, Cabo Verde, that suggest that oceanic intraplate silica-undersaturated explosive eruptions sample volatile-rich sources. Primitive MI (melt Mg# 70 to 71%) data suggest that these melts are oxidized (NiNiO to NiNiO+1) and very high in volatiles (up to 2 wt% CO2, 2.8 wt% H2O, 6,000 ppm S, 1,900 ppm F, and 1,100 ppm Cl) making Fogo a global endmember. Storage depths calculated from these high volatile contents also imply that magma storage at Fogo occurs at mantle depths (~20 to 30 km) and that these eruptions are fed from the mantle. Our results suggest that oceanic intraplate mafic eruptions are sustained from the mantle by high volatile concentrations inherited from their source and that deep CO2 exsolution (here up to ~800 MPa) drives their ascent and explosivity.