Smedsrud Lars H.

No Thumbnail Available
Last Name
Smedsrud
First Name
Lars H.
ORCID
0000-0001-7391-0740

Search Results

Now showing 1 - 4 of 4
  • Article
    Supercooled Southern Ocean waters
    (American Geophysical Union, 2020-10-09) Haumann, F. Alexander ; Moorman, Ruth ; Riser, Stephen C. ; Smedsrud, Lars H. ; Maksym, Ted ; Wong, Annie P. S. ; Wilson, Earle A. ; Drucker, Robert S. ; Talley, Lynne D. ; Johnson, Kenneth S. ; Key, Robert M. ; Sarmiento, Jorge L.
    In cold polar waters, temperatures sometimes drop below the freezing point, a process referred to as supercooling. However, observational challenges in polar regions limit our understanding of the spatial and temporal extent of this phenomenon. We here provide observational evidence that supercooled waters are much more widespread in the seasonally ice‐covered Southern Ocean than previously reported. In 5.8% of all analyzed hydrographic profiles south of 55°S, we find temperatures below the surface freezing point (“potential” supercooling), and half of these have temperatures below the local freezing point (“in situ” supercooling). Their occurrence doubles when neglecting measurement uncertainties. We attribute deep coastal‐ocean supercooling to melting of Antarctic ice shelves and surface‐induced supercooling in the seasonal sea‐ice region to wintertime sea‐ice formation. The latter supercooling type can extend down to the permanent pycnocline due to convective sinking plumes—an important mechanism for vertical tracer transport and water‐mass structure in the polar ocean.
  • Article
    Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice
    (Nature Publishig Group, 2019-01-17) Assmy, Philipp ; Fernández-Méndez, Mar ; Duarte, Pedro ; Meyer, Amelie ; Randelhoff, Achim ; Mundy, Christopher J. ; Olsen, Lasse M. ; Kauko, Hanna Maria ; Bailey, Allison ; Chierici, Melissa ; Cohen, Lana ; Doulgeris, Anthony P. ; Ehn, Jens K. ; Fransson, Agneta ; Gerland, Sebastian ; Hop, Haakon ; Hudson, Stephen R. ; Hughes, Nick ; Itkin, Polona ; Johnsen, Geir ; King, Jennifer A. ; Koch, Boris P. ; Koenig, Zoe ; Kwasniewski, Slawomir ; Laney, Samuel R. ; Nicolaus, Marcel ; Pavlov, Alexey K. ; Polashenski, Christopher M. ; Provost, Christine ; Rösel, Anja ; Sandbu, Marthe ; Spreen, Gunnar ; Smedsrud, Lars H. ; Sundfjord, Arild ; Taskjelle, Torbjørn ; Tatarek, Agnieszka ; Wiktor, Jozef ; Wagner, Penelope M. ; Wold, Anette ; Steen, Harald ; Granskog, Mats A.
    The Arctic icescape is rapidly transforming from a thicker multiyear ice cover to a thinner and largely seasonal first-year ice cover with significant consequences for Arctic primary production. One critical challenge is to understand how productivity will change within the next decades. Recent studies have reported extensive phytoplankton blooms beneath ponded sea ice during summer, indicating that satellite-based Arctic annual primary production estimates may be significantly underestimated. Here we present a unique time-series of a phytoplankton spring bloom observed beneath snow-covered Arctic pack ice. The bloom, dominated by the haptophyte algae Phaeocystis pouchetii, caused near depletion of the surface nitrate inventory and a decline in dissolved inorganic carbon by 16 ± 6 g C m−2. Ocean circulation characteristics in the area indicated that the bloom developed in situ despite the snow-covered sea ice. Leads in the dynamic ice cover provided added sunlight necessary to initiate and sustain the bloom. Phytoplankton blooms beneath snow-covered ice might become more common and widespread in the future Arctic Ocean with frequent lead formation due to thinner and more dynamic sea ice despite projected increases in high-Arctic snowfall. This could alter productivity, marine food webs and carbon sequestration in the Arctic Ocean.
  • Article
    Export of ice sheet meltwater from Upernavik Fjord, West Greenland
    (American Meteorological Society, 2022-03-01) Muilwijk, Morven ; Straneo, Fiamma ; Slater, Donald A. ; Smedsrud, Lars H. ; Holte, James W. ; Wood, Michael ; Andresen, Camilla S. ; Harden, Benjamin E.
    Meltwater from Greenland is an important freshwater source for the North Atlantic Ocean, released into the ocean at the head of fjords in the form of runoff, submarine melt, and icebergs. The meltwater release gives rise to complex in-fjord transformations that result in its dilution through mixing with other water masses. The transformed waters, which contain the meltwater, are exported from the fjords as a new water mass Glacially Modified Water (GMW). Here we use summer hydrographic data collected from 2013 to 2019 in Upernavik, a major glacial fjord in northwest Greenland, to describe the water masses that flow into the fjord from the shelf and the exported GMWs. Using an optimum multi-parameter technique across multiple years we then show that GMW is composed of 57.8% ± 8.1% Atlantic Water (AW), 41.0% ± 8.3% Polar Water (PW), 1.0% ± 0.1% subglacial discharge, and 0.2% ± 0.2% submarine meltwater. We show that the GMW fractional composition cannot be described by buoyant plume theory alone since it includes lateral mixing within the upper layers of the fjord not accounted for by buoyant plume dynamics. Consistent with its composition, we find that changes in GMW properties reflect changes in the AW and PW source waters. Using the obtained dilution ratios, this study suggests that the exchange across the fjord mouth during summer is on the order of 50 mSv (1 Sv ≡ 106 m3 s−1) (compared to a freshwater input of 0.5 mSv). This study provides a first-order parameterization for the exchange at the mouth of glacial fjords for large-scale ocean models.
  • Article
    How much Arctic fresh water participates in the subpolar overturning circulation?
    (American Meteorological Society, 2021-03-01) Le Bras, Isabela A. ; Straneo, Fiamma ; Muilwijk, Morven ; Smedsrud, Lars H. ; Li, Feili ; Lozier, M. Susan ; Holliday, Naomi Penny
    Fresh Arctic waters flowing into the Atlantic are thought to have two primary fates. They may be mixed into the deep ocean as part of the overturning circulation, or flow alongside regions of deep water formation without impacting overturning. Climate models suggest that as increasing amounts of freshwater enter the Atlantic, the overturning circulation will be disrupted, yet we lack an understanding of how much freshwater is mixed into the overturning circulation’s deep limb in the present day. To constrain these freshwater pathways, we build steady-state volume, salt, and heat budgets east of Greenland that are initialized with observations and closed using inverse methods. Freshwater sources are split into oceanic Polar Waters from the Arctic and surface freshwater fluxes, which include net precipitation, runoff, and ice melt, to examine how they imprint the circulation differently. We find that 65 mSv (1 Sv ≡ 106 m3 s−1) of the total 110 mSv of surface freshwater fluxes that enter our domain participate in the overturning circulation, as do 0.6 Sv of the total 1.2 Sv of Polar Waters that flow through Fram Strait. Based on these results, we hypothesize that the overturning circulation is more sensitive to future changes in Arctic freshwater outflow and precipitation, while Greenland runoff and iceberg melt are more likely to stay along the coast of Greenland.