Hampton
Thomas H.
Hampton
Thomas H.
No Thumbnail Available
Search Results
Now showing
1 - 6 of 6
-
ArticleAnalysis of lung microbiota in bronchoalveolar lavage, protected brush and sputum samples from subjects with mild-to-moderate cystic fibrosis Lung Disease(Public Library of Science, 2016-03-04) Hogan, Deborah A. ; Willger, Sven D. ; Dolben, Emily L. ; Hampton, Thomas H. ; Stanton, Bruce A. ; Morrison, Hilary G. ; Sogin, Mitchell L. ; Czum, Julianna ; Ashare, AlixIndividuals with cystic fibrosis (CF) often acquire chronic lung infections that lead to irreversible damage. We sought to examine regional variation in the microbial communities in the lungs of individuals with mild-to-moderate CF lung disease, to examine the relationship between the local microbiota and local damage, and to determine the relationships between microbiota in samples taken directly from the lung and the microbiota in spontaneously expectorated sputum. In this initial study, nine stable, adult CF patients with an FEV1>50% underwent regional sampling of different lobes of the right lung by bronchoalveolar lavage (BAL) and protected brush (PB) sampling of mucus plugs. Sputum samples were obtained from six of the nine subjects immediately prior to the procedure. Microbial community analysis was performed on DNA extracted from these samples and the extent of damage in each lobe was quantified from a recent CT scan. The extent of damage observed in regions of the right lung did not correlate with specific microbial genera, levels of community diversity or composition, or bacterial genome copies per ml of BAL fluid. In all subjects, BAL fluid from different regions of the lung contained similar microbial communities. In eight out of nine subjects, PB samples from different regions of the lung were also similar in microbial community composition, and were similar to microbial communities in BAL fluid from the same lobe. Microbial communities in PB samples were more diverse than those in BAL samples, suggesting enrichment of some taxa in mucus plugs. To our knowledge, this study is the first to examine the microbiota in different regions of the CF lung in clinically stable individuals with mild-to-moderate CF-related lung disease.
-
ArticleThe landscape of extreme genomic variation in the highly adaptable Atlantic killifish(Oxford University Press, 2017-03-01) Reid, Noah M. ; Jackson, Craig E. ; Gilbert, Don ; Minx, Patrick ; Montague, Michael J. ; Hampton, Thomas H. ; Helfrich, Lily W. ; King, Benjamin L. ; Nacci, Diane E. ; Aluru, Neelakanteswar ; Karchner, Sibel I. ; Colbourne, John K. ; Hahn, Mark E. ; Shaw, Joseph R. ; Oleksiak, Marjorie F. ; Crawford, Douglas L. ; Warren, Wesley C. ; Whitehead, AndrewUnderstanding and predicting the fate of populations in changing environments require knowledge about the mechanisms that support phenotypic plasticity and the adaptive value and evolutionary fate of genetic variation within populations. Atlantic killifish (Fundulus heteroclitus) exhibit extensive phenotypic plasticity that supports large population sizes in highly fluctuating estuarine environments. Populations have also evolved diverse local adaptations. To yield insights into the genomic variation that supports their adaptability, we sequenced a reference genome and 48 additional whole genomes from a wild population. Evolution of genes associated with cell cycle regulation and apoptosis is accelerated along the killifish lineage, which is likely tied to adaptations for life in highly variable estuarine environments. Genome-wide standing genetic variation, including nucleotide diversity and copy number variation, is extremely high. The highest diversity genes are those associated with immune function and olfaction, whereas genes under greatest evolutionary constraint are those associated with neurological, developmental, and cytoskeletal functions. Reduced genetic variation is detected for tight junction proteins, which in killifish regulate paracellular permeability that supports their extreme physiological flexibility. Low-diversity genes engage in more regulatory interactions than high-diversity genes, consistent with the influence of pleiotropic constraint on molecular evolution. High genetic variation is crucial for continued persistence of species given the pace of contemporary environmental change. Killifish populations harbor among the highest levels of nucleotide diversity yet reported for a vertebrate species, and thus may serve as a useful model system for studying evolutionary potential in variable and changing environments.
-
PreprintIron supplementation does not worsen respiratory health or alter the sputum microbiome in cystic fibrosis( 2013-10) Gifford, Alex H. ; Alexandru, Diana M. ; Li, Zhigang ; Dorman, Dana B. ; Moulton, Lisa A. ; Price, Katherine E. ; Hampton, Thomas H. ; Sogin, Mitchell L. ; Zuckerman, Jonathan B. ; Parker, H. Worth ; Stanton, Bruce A. ; O'Toole, George A.Iron supplementation for hypoferremic anemia could potentiate bacterial growth in the cystic fibrosis (CF) lung, but clinical trials testing this hypothesis are lacking. Twenty-two adults with CF and hypoferremic anemia participated in a randomized, double-blind, placebo-controlled, crossover trial of ferrous sulfate 325 mg daily for 6 weeks. Iron-related hematologic parameters, anthropometric data, sputum iron, Akron Pulmonary Exacerbation Score (PES), and the sputum microbiome were serially assessed. Fixed-effect models were used to describe how ferrous sulfate affected these variables. Ferrous sulfate increased serum iron by 22.3% and transferrin saturation (TSAT) by 26.8% from baseline (p < 0.05) but did not affect hemoglobin, sputum iron, Akron PES, and the sputum microbiome. Low-dose ferrous sulfate improved hypoferremia without correcting anemia after 6 weeks. We did not observe significant effects on sputum iron, Akron PES, and the sputum microbiome. Although we did not identify untoward health effects of iron supplementation, a larger blinded randomized controlled trial would be needed to fully demonstrate safety.
-
ArticleChronic exposure to arsenic in the drinking water alters the expression of immune response genes in mouse lung(National Institute of Environmental Health Sciences, 2009-03-04) Kozul, Courtney D. ; Hampton, Thomas H. ; Davey, Jennifer C. ; Gosse, Julie A. ; Nomikos, Athena P. ; Eisenhauer, Phillip L. ; Weiss, Daniel J. ; Thorpe, Jessica E. ; Ihnat, Michael A. ; Hamilton, Joshua W.Chronic exposure to drinking water arsenic is a significant worldwide environmental health concern. Exposure to As is associated with an increased risk of lung disease, which may make it a unique toxicant, because lung toxicity is usually associated with inhalation rather than ingestion. The goal of this study was to examine mRNA and protein expression changes in the lungs of mice exposed chronically to environmentally relevant concentrations of As in the food or drinking water, specifically examining the hypothesis that As may preferentially affect gene and protein expression related to immune function as part of its mechanism of toxicant action. C57BL/6J mice fed a casein-based AIN-76A defined diet were exposed to 10 or 100 ppb As in drinking water or food for 5–6 weeks. Whole genome transcriptome profiling of animal lungs revealed significant alterations in the expression of many genes with functions in cell adhesion and migration, channels, receptors, differentiation and proliferation, and, most strikingly, aspects of the innate immune response. Confirmation of mRNA and protein expression changes in key genes of this response revealed that genes for interleukin 1β, interleukin 1 receptor, a number of toll-like receptors, and several cytokines and cytokine receptors were significantly altered in the lungs of As-exposed mice. These findings indicate that chronic low-dose As exposure at the current U.S. drinking-water standard can elicit effects on the regulation of innate immunity, which may contribute to altered disease risk, particularly in lung.
-
ArticleThe microbiome in pediatric cystic fibrosis patients : the role of shared environment suggests a window of intervention(BioMed Central, 2014-04-28) Hampton, Thomas H. ; Green, Deanna M. ; Cutting, Garry R. ; Morrison, Hilary G. ; Sogin, Mitchell L. ; Gifford, Alex H. ; Stanton, Bruce A. ; O’Toole, George A.Cystic fibrosis (CF) is caused by mutations in the CFTR gene that predispose the airway to infection. Chronic infection by pathogens such as Pseudomonas aeruginosa leads to inflammation that gradually degrades lung function, resulting in morbidity and early mortality. In a previous study of CF monozygotic twins, we demonstrate that genetic modifiers significantly affect the establishment of persistent P. aeruginosa colonization in CF. Recognizing that bacteria other than P. aeruginosa contribute to the CF microbiome and associated pathology, we used deep sequencing of sputum from pediatric monozygotic twins and nontwin siblings with CF to characterize pediatric bacterial communities and the role that genetics plays in their evolution. We found that the microbial communities in sputum from pediatric patients living together were much more alike than those from pediatric individuals living apart, regardless of whether samples were taken from monozygous twins or from nontwin CF siblings living together, which we used as a proxy for dizygous twins. In contrast, adult communities were comparatively monolithic and much less diverse than the microbiome of pediatric patients. Taken together, these data and other recent studies suggest that as patients age, the CF microbiome becomes less diverse, more refractory to treatment and dominated by mucoid P. aeruginosa, as well as being associated with accelerated pulmonary decline. Our studies show that the microbiome of pediatric patients is susceptible to environmental influences, suggesting that interventions to preserve the community structure found in young CF patients might be possible, perhaps slowing disease progression.
-
ArticleGene expression profile of peripheral blood lymphocytes from renal cell carcinoma patients treated with IL-2, Interferon-α and dendritic cell vaccine(Public Library of Science, 2012-12-03) Wolf, Benita ; Schwarzer, Adrian ; Cote, Anik L. ; Hampton, Thomas H. ; Schwaab, Thomas ; Huarte, Eduardo ; Tomlinson, Craig R. ; Gui, Jiang ; Fisher, Jan L. ; Fadul, Camilo E. ; Hamilton, Joshua W. ; Ernstoff, Marc S.Lymphocytes are a key component of the immune system and their differentiation and function are directly influenced by cancer. We examined peripheral blood lymphocyte (PBL) gene expression as a biomarker of illness and treatment effect using the Affymetrix Human Gene ST1 platform in patients with metastatic renal cell carcinoma (mRCC) who received combined treatment with IL-2, interferon-?-2a and dendritic cell vaccine. We examined gene expression, cytokine levels in patient serum and lymphocyte subsets as determined by flow cytometry (FCM). Pre-treatment PBLs from patients with mRCC exhibit a gene expression profile and serum cytokine profile consistent with inflammation and proliferation not found in healthy donors (HD). PBL gene expression from patients with mRCC showed increased mRNA of genes involved with T-cell and TREG-cell activation pathways, which was also reflected in lymphocyte subset distribution. Overall, PBL gene expression post-treatment (POST) was not significantly different than pre-treatment (PRE). Nevertheless, treatment related changes in gene expression (post-treatment minus pre-treatment) revealed an increased expression of T-cell and B-cell receptor signaling pathways in responding (R) patients compared to non-responding (NR) patients. In addition, we observed down-regulation of TREG-cell pathways post-treatment in R vs. NR patients. While exploratory in nature, this study supports the hypothesis that enhanced inflammatory cytotoxic pathways coupled with blunting of the regulatory pathways is necessary for effective anti-cancer activity associated with immune therapy. This type of analysis can potentially identify additional immune therapeutic targets in patients with mRCC.