Schroeder Timothy

No Thumbnail Available
Last Name
Schroeder
First Name
Timothy
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Nonvolcanic seafloor spreading and corner-flow rotation accommodated by extensional faulting at 15°N on the Mid-Atlantic Ridge : a structural synthesis of ODP Leg 209
    (American Geophysical Union, 2007-06-28) Schroeder, Timothy ; Cheadle, Michael J. ; Dick, Henry J. B. ; Faul, Ulrich ; Casey, John F. ; Kelemen, Peter B.
    Drilling during ODP Leg 209, dredging, and submersible dives have delineated an anomalous stretch of the Mid-Atlantic Ridge north and south of the 15°20′N Fracture Zone. The seafloor here consists dominantly of mantle peridotite with gabbroic intrusions that in places is covered by a thin, discontinuous extrusive volcanic layer. Thick lithosphere (10–20 km) in this region inhibits magma from reaching shallow levels beneath the ridge axis, thereby causing plate accretion to be accommodated by extensional faulting rather than magmatism. The bathymetry and complex fault relations in the drill-core suggest that mantle denudation and spreading are accommodated by a combination of high-displacement, rolling-hinge normal faults and secondary lower-displacement normal faults. These extensional faults must also accommodate corner flow rotation (up to 90°) of the upwelling mantle within the shallow lithosphere, consistent with remnant magnetic inclinations in denuded peridotite and gabbro from Leg 209 core that indicate up to 90° of sub-Curie-temperature rotation.
  • Article
    Mineral carbonation of peridotite fueled by magmatic degassing and melt impregnation in an oceanic transform fault
    (National Academy of Sciences, 2024-02-12) Klein, Frieder ; Schroeder, Timothy ; John, Cedric M. ; Davis, Simon ; Humphris, Susan E. ; Seewald, Jeffrey S. ; Sichel, Susanna E. ; Bach, Wolfgang ; Brunelli, Daniele
    Most of the geologic CO2 entering Earth’s atmosphere and oceans is emitted along plate margins. While C-cycling at mid-ocean ridges and subduction zones has been studied for decades, little attention has been paid to degassing of magmatic CO2 and mineral carbonation of mantle rocks in oceanic transform faults. We studied the formation of soapstone (magnesite–talc rock) and other magnesite-bearing assemblages during mineral carbonation of mantle peridotite in the St. Paul’s transform fault, equatorial Atlantic. Clumped carbonate thermometry of soapstone yields a formation (or equilibration) temperature of 147 ± 13 °C which, based on thermodynamic constraints, suggests that CO2(aq) concentrations of the hydrothermal fluid were at least an order of magnitude higher than in seawater. The association of magnesite with apatite in veins, magnesite with a δ13C of −3.40 ± 0.04‰, and the enrichment of CO2 in hydrothermal fluids point to magmatic degassing and melt-impregnation as the main source of CO2. Melt-rock interaction related to gas-rich alkali olivine basalt volcanism near the St. Paul’s Rocks archipelago is manifested in systematic changes in peridotite compositions, notably a strong enrichment in incompatible elements with decreasing MgO/SiO2. These findings reveal a previously undocumented aspect of the geologic carbon cycle in one of the largest oceanic transform faults: Fueled by magmatism in or below the root zone of the transform fault and subsequent degassing, the fault constitutes a conduit for CO2-rich hydrothermal fluids, while carbonation of peridotite represents a vast sink for the emitted CO2.