Marshall John C.

No Thumbnail Available
Last Name
Marshall
First Name
John C.
ORCID
0000-0001-9230-3591

Search Results

Now showing 1 - 9 of 9
  • Article
    Hydrothermal plume dynamics on Europa : implications for chaos formation
    (American Geophysical Union, 2004-03-20) Goodman, Jason C. ; Collins, Geoffrey C. ; Marshall, John C. ; Pierrehumbert, Raymond T.
    Hydrothermal plumes may be responsible for transmitting radiogenic or tidally generated heat from Europa's rocky interior through a liquid ocean to the base of its ice shell. This process has been implicated in the formation of chaos regions and lenticulae by melting or exciting convection in the ice layer. In contrast to earlier work, we argue that Europa's ocean should be treated as an unstratified fluid. We have adapted and expanded upon existing work describing buoyant plumes in a rotating, unstratified environment. We discuss the scaling laws governing the flow and geometry of plumes on Europa and perform a laboratory experiment to obtain scaling constants and to visualize plume behavior in a Europa-like parameter regime. We predict that hydrothermal plumes on Europa are of a lateral scale (at least 25–50 km) comparable to large chaos regions; they are too broad to be responsible for the formation of individual lenticulae. Plume heat fluxes (0.1–10 W/m2) are too weak to allow complete melt-through of the ice layer. Current speeds in the plume (3–8 mm/s) are much slower than indicated by previous studies. The observed movement of ice blocks in the Conamara Chaos region is unlikely to be driven by such weak flow.
  • Article
    Suppressed pCO(2) in the Southern Ocean due to the interaction between current and wind
    (American Geophysical Union, 2021-11-15) Kwak, Kyungmin ; Song, Hajoon ; Marshall, John C. ; Seo, Hyodae ; McGillicuddy, Dennis J.
    The Southern Ocean, an important region for the uptake of anthropogenic carbon dioxide (CO2), features strong surface currents due to substantial mesoscale meanders and eddies. These features interact with the wind and modify the momentum transfer from the atmosphere to the ocean. Although such interactions are known to reduce momentum transfer, their impact on air-sea carbon exchange remains unclear. Using a 1/20° physical-biogeochemical coupled ocean model, we examined the impact of the current-wind interaction on the surface carbon concentration and the air-sea carbon exchange in the Southern Ocean. The current-wind interaction decreased winter partial pressure of CO2 (pCO2) at the ocean surface mainly south of the northern subantarctic front. It also reduced pCO2 in summer, indicating enhanced uptake, but not to the same extent as the winter loss. Consequently, the net outgassing of CO2 was found to be reduced by approximately 17% when including current-wind interaction. These changes stem from the combined effect of vertical mixing and Ekman divergence. A budget analysis of dissolved inorganic carbon (DIC) revealed that a weakening of vertical mixing by current-wind interaction reduces the carbon supply from below, and particularly so in winter. The weaker wind stress additionally lowers the subsurface DIC concentration in summer, which can affect the vertical diffusive flux of carbon in winter. Our study suggests that ignoring current-wind interactions in the Southern Ocean can overestimate winter CO2 outgassing.
  • Article
    Direct estimate of lateral eddy diffusivity upstream of Drake Passage
    (American Meteorological Society, 2014-10) Tulloch, Ross ; Ferrari, Raffaele ; Jahn, Oliver ; Klocker, Andreas ; LaCasce, Joseph H. ; Ledwell, James R. ; Marshall, John C. ; Messias, Marie-Jose ; Speer, Kevin G. ; Watson, Andrew J.
    The first direct estimate of the rate at which geostrophic turbulence mixes tracers across the Antarctic Circumpolar Current is presented. The estimate is computed from the spreading of a tracer released upstream of Drake Passage as part of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). The meridional eddy diffusivity, a measure of the rate at which the area of the tracer spreads along an isopycnal across the Antarctic Circumpolar Current, is 710 ± 260 m2 s−1 at 1500-m depth. The estimate is based on an extrapolation of the tracer-based diffusivity using output from numerical tracers released in a one-twentieth of a degree model simulation of the circulation and turbulence in the Drake Passage region. The model is shown to reproduce the observed spreading rate of the DIMES tracer and suggests that the meridional eddy diffusivity is weak in the upper kilometer of the water column with values below 500 m2 s−1 and peaks at the steering level, near 2 km, where the eddy phase speed is equal to the mean flow speed. These vertical variations are not captured by ocean models presently used for climate studies, but they significantly affect the ventilation of different water masses.
  • Article
    The CLIMODE field campaign : observing the cycle of convection and restratification over the Gulf Stream
    (American Meteorological Society, 2009-09) Marshall, John C. ; Ferrari, Raffaele ; Forget, Gael ; Andersson, A. ; Bates, Nicholas R. ; Dewar, William K. ; Doney, Scott C. ; Fratantoni, David M. ; Joyce, Terrence M. ; Straneo, Fiamma ; Toole, John M. ; Weller, Robert A. ; Edson, James B. ; Gregg, M. C. ; Kelly, Kathryn A. ; Lozier, M. Susan ; Palter, Jaime B. ; Lumpkin, Rick ; Samelson, Roger M. ; Skyllingstad, Eric D. ; Silverthorne, Katherine E. ; Talley, Lynne D. ; Thomas, Leif N.
    A major oceanographic field experiment is described, which is designed to observe, quantify, and understand the creation and dispersal of weakly stratified fluid known as “mode water” in the region of the Gulf Stream. Formed in the wintertime by convection driven by the most intense air–sea fluxes observed anywhere over the globe, the role of mode waters in the general circulation of the subtropical gyre and its biogeo-chemical cycles is also addressed. The experiment is known as the CLIVAR Mode Water Dynamic Experiment (CLIMODE). Here we review the scientific objectives of the experiment and present some preliminary results.
  • Article
    Impact of near-inertial waves on vertical mixing and air-sea CO2 fluxes in the Southern Ocean
    (American Geophysical Union, 2019-06-17) Song, Hajoon ; Marshall, John C. ; Campin, Jean-Michel ; McGillicuddy, Dennis J.
    We report the significant impact of near‐inertial waves (NIWs) on vertical mixing and air‐sea carbon dioxide (CO2) fluxes in the Southern Ocean using a biogeochemical model coupled to an eddy‐rich ocean circulation model. The effects of high‐frequency processes are quantified by comparing the fully coupled solution (ONLINE) to two offline simulations based on 5‐day‐averaged output of the ONLINE simulation: one that uses vertical mixing archived from the ONLINE model (CTRL) and another in which vertical mixing is recomputed from the 5‐day average hydrodynamic fields (5dAVG). In this latter simulation, processes with temporal variabilities of a few days including NIWs are excluded in the biogeochemical simulation. Suppression of these processes reduces vertical shear and vertical mixing in the upper ocean, leading to decreased supply of carbon‐rich water from below, less CO2 outgassing in austral winter, and more uptake in summer. The net change amounts up to one third of the seasonal variability in Southern Ocean CO2 flux. Our results clearly demonstrate the importance of resolving high‐frequency processes such as NIWs to better estimate the carbon cycle in numerical model simulations.
  • Article
    Evaluation of ocean carbon cycle models with data-based metrics
    (American Geophysical Union, 2004-04-02) Matsumoto, K. ; Sarmiento, Jorge L. ; Key, Robert M. ; Aumont, Olivier ; Bullister, John L. ; Caldeira, Ken ; Campin, J.-M. ; Doney, Scott C. ; Drange, Helge ; Dutay, J.-C. ; Follows, Michael J. ; Gao, Y. ; Gnanadesikan, Anand ; Gruber, Nicolas ; Ishida, Akio ; Joos, Fortunat ; Lindsay, Keith ; Maier-Reimer, Ernst ; Marshall, John C. ; Matear, Richard J. ; Monfray, Patrick ; Mouchet, Anne ; Najjar, Raymond G. ; Plattner, Gian-Kasper ; Schlitzer, Reiner ; Slater, Richard D. ; Swathi, P. S. ; Totterdell, Ian J. ; Weirig, Marie-France ; Yamanaka, Yasuhiro ; Yool, Andrew ; Orr, James C.
    New radiocarbon and chlorofluorocarbon-11 data from the World Ocean Circulation Experiment are used to assess a suite of 19 ocean carbon cycle models. We use the distributions and inventories of these tracers as quantitative metrics of model skill and find that only about a quarter of the suite is consistent with the new data-based metrics. This should serve as a warning bell to the larger community that not all is well with current generation of ocean carbon cycle models. At the same time, this highlights the danger in simply using the available models to represent the state-of-the-art modeling without considering the credibility of each model.
  • Article
    Evaluating global ocean carbon models : the importance of realistic physics
    (American Geophysical Union, 2004-09-15) Doney, Scott C. ; Lindsay, Keith ; Caldeira, Ken ; Campin, J.-M. ; Drange, Helge ; Dutay, J.-C. ; Follows, Michael J. ; Gao, Y. ; Gnanadesikan, Anand ; Gruber, Nicolas ; Ishida, Akio ; Joos, Fortunat ; Madec, G. ; Maier-Reimer, Ernst ; Marshall, John C. ; Matear, Richard J. ; Monfray, Patrick ; Mouchet, Anne ; Najjar, Raymond G. ; Orr, James C. ; Plattner, Gian-Kasper ; Sarmiento, Jorge L. ; Schlitzer, Reiner ; Slater, Richard D. ; Totterdell, Ian J. ; Weirig, Marie-France ; Yamanaka, Yasuhiro ; Yool, Andrew
    A suite of standard ocean hydrographic and circulation metrics are applied to the equilibrium physical solutions from 13 global carbon models participating in phase 2 of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2). Model-data comparisons are presented for sea surface temperature and salinity, seasonal mixed layer depth, meridional heat and freshwater transport, 3-D hydrographic fields, and meridional overturning. Considerable variation exists among the OCMIP-2 simulations, with some of the solutions falling noticeably outside available observational constraints. For some cases, model-model and model-data differences can be related to variations in surface forcing, subgrid-scale parameterizations, and model architecture. These errors in the physical metrics point to significant problems in the underlying model representations of ocean transport and dynamics, problems that directly affect the OCMIP predicted ocean tracer and carbon cycle variables (e.g., air-sea CO2 flux, chlorofluorocarbon and anthropogenic CO2 uptake, and export production). A substantial fraction of the large model-model ranges in OCMIP-2 biogeochemical fields (±25–40%) represents the propagation of known errors in model physics. Therefore the model-model spread likely overstates the uncertainty in our current understanding of the ocean carbon system, particularly for transport-dominated fields such as the historical uptake of anthropogenic CO2. A full error assessment, however, would need to account for additional sources of uncertainty such as more complex biological-chemical-physical interactions, biases arising from poorly resolved or neglected physical processes, and climate change.
  • Article
    Anomalous chlorofluorocarbon uptake by mesoscale eddies in the Drake Passage region
    (John Wiley & Sons, 2015-02-23) Song, Hajoon ; Marshall, John C. ; Gaube, Peter ; McGillicuddy, Dennis J.
    The role of mesoscale eddies in the uptake of anthropogenic chlorofluorocarbon-11 (CFC-11) gas is investigated with a 1/20° eddy-resolving numerical ocean model of a region of the Southern Ocean. With a relatively fast air-sea equilibrium time scale (about a month), the air-sea CFC-11 flux quickly responds to the changes in the mixed layer CFC-11 partial pressure (pCFC-11). At the mesoscale, significant correlations are observed between pCFC-11 anomaly, anomalies in sea surface temperature (SST), net heat flux, and mixed layer depth. An eddy-centric analysis of the simulated CFC-11 field suggests that anticyclonic warm-core eddies generate negative pCFC-11 anomalies and cyclonic cold-core eddies generate positive anomalies of pCFC-11. Surface pCFC-11 is modulated by mixed layer dynamics in addition to CFC-11 air-sea fluxes. A negative cross correlation between mixed layer depth and surface pCFC-11 anomalies is linked to higher CFC-11 uptake in anticyclones and lower CFC-11 uptake in cyclones, especially in winter. An almost exact asymmetry in the air-sea CFC-11 flux between cyclones and anticyclones is found.
  • Article
    Ocean system science to inform the exploration of ocean worlds
    (Oceanography Society, 2022-05-23) German, Christopher R. ; Blackman, Donna K. ; Fisher, Andrew T. ; Girguis, Peter R. ; Hand, Kevin P. ; Hoehler, Tori M. ; Huber, Julie A. ; Marshall, John C. ; Pietro, Kathryn R. ; Seewald, Jeffrey S. ; Shock, Everett ; Sotin, Christophe ; Thurnherr, Andreas M. ; Toner, Brandy M.
    Ocean worlds provide fascinating opportunities for future ocean research. They allow us to test our understanding of processes we consider fundamental to Earth’s ocean and simultaneously provide motivation to explore our ocean further and develop new technologies to do so. In parallel, ocean worlds research offers opportunities for ocean scientists to provide meaningful contributions to novel investigations in the coming decades that will search for life beyond Earth. Key to the contributions that oceanographers can make to this field is that studies of all other ocean worlds remain extremely data limited. Here, we describe an approach based on ocean systems science in which theoretical modeling can be used, in concert with targeted laboratory experimentation and direct observations in Earth’s ocean, to predict what processes (including those essential to support life) might be occurring on other ocean worlds. In turn, such an approach would help identify new technologies that might be required for future space missions as well as appropriate analog studies that could be conducted on Earth to develop and validate such technologies. Our approach is both integrative and interdisciplinary and considers multiple domains, from processes active in the subseafloor to those associated with ocean-ice feedbacks.