Chang Fred

No Thumbnail Available
Last Name
Chang
First Name
Fred
ORCID

Search Results

Now showing 1 - 4 of 4
  • Article
    Physical properties of the cytoplasm modulate the rates of microtubule polymerization and depolymerization
    (Elsevier, 2022-02-28) Molines, Arthur T. ; Lemière, Joë ; Gazzola, Morgan ; Steinmark, Ida Emilie ; Edrington, Claire H. ; Hsu, Chieh-Ting ; Real-Calderon, Paula ; Suhling, Klaus ; Goshima, Gohta ; Holt, Liam J. ; Thery, Manuel ; Brouhard, Gary J. ; Chang, Fred
    The cytoplasm is a crowded, visco-elastic environment whose physical properties change according to physiological or developmental states. How the physical properties of the cytoplasm impact cellular functions in vivo remains poorly understood. Here, we probe the effects of cytoplasmic concentration on microtubules by applying osmotic shifts to fission yeast, moss, and mammalian cells. We show that the rates of both microtubule polymerization and depolymerization scale linearly and inversely with cytoplasmic concentration; an increase in cytoplasmic concentration decreases the rates of microtubule polymerization and depolymerization proportionally, whereas a decrease in cytoplasmic concentration leads to the opposite. Numerous lines of evidence indicate that these effects are due to changes in cytoplasmic viscosity rather than cellular stress responses or macromolecular crowding per se. We reconstituted these effects on microtubules in vitro by tuning viscosity. Our findings indicate that, even in normal conditions, the viscosity of the cytoplasm modulates the reactions that underlie microtubule dynamic behaviors.
  • Article
    Regulation of a formin complex by the microtubule plus end protein tea1p
    (Rockefeller University Press, 2004-06-07) Feierbach, Becket ; Verde, Fulvia ; Chang, Fred
    The plus ends of microtubules have been speculated to regulate the actin cytoskeleton for the proper positioning of sites of cell polarization and cytokinesis. In the fission yeast Schizosaccharomyces pombe, interphase microtubules and the kelch repeat protein tea1p regulate polarized cell growth. Here, we show that tea1p is directly deposited at cell tips by microtubule plus ends. Tea1p associates in large "polarisome" complexes with bud6p and for3p, a formin that assembles actin cables. Tea1p also interacts in a separate complex with the CLIP-170 protein tip1p, a microtubule plus end–binding protein that anchors tea1p to the microtubule plus end. Localization experiments suggest that tea1p and bud6p regulate formin distribution and actin cable assembly. Although single mutants still polarize, for3{Delta}bud6{Delta}tea1{Delta} triple-mutant cells lack polarity, indicating that these proteins contribute overlapping functions in cell polarization. Thus, these experiments begin to elucidate how microtubules contribute to the proper spatial regulation of actin assembly and polarized cell growth.
  • Preprint
    Regulation of cytokinesis by spindle-pole bodies
    ( 2006-05-04) Magidson, Valentin ; Chang, Fred ; Khodjakov, Alexey
    In the fission yeast Schizosaccharomyces pombe, cytokinesis is thought to be controlled by the daughter spindle pole body (SPB) through a regulatory pathway, the Septation Initiation Network (SIN). Here we demonstrate that laser ablation of both but not a single SPB results in cytokinesis failure. Ablation of just the daughter SPB often leads to activation of the SIN on the mother and successful cytokinesis. Thus, either SPB can drive cytokinesis.
  • Article
    Vast heterogeneity in cytoplasmic diffusion rates revealed by nanorheology and Doppelgänger simulations
    (Biophysical Society, 2023-03-07) Garner, Rikki M. ; Molines, Arthur T. ; Theriot, Julie A. ; Chang, Fred
    The cytoplasm is a complex, crowded, actively driven environment whose biophysical characteristics modulate critical cellular processes such as cytoskeletal dynamics, phase separation, and stem cell fate. Little is known about the variance in these cytoplasmic properties. Here, we employed particle-tracking nanorheology on genetically encoded multimeric 40 nm nanoparticles (GEMs) to measure diffusion within the cytoplasm of individual fission yeast (Schizosaccharomyces pombe) cellscells. We found that the apparent diffusion coefficients of individual GEM particles varied over a 400-fold range, while the differences in average particle diffusivity among individual cells spanned a 10-fold range. To determine the origin of this heterogeneity, we developed a Doppelgänger simulation approach that uses stochastic simulations of GEM diffusion that replicate the experimental statistics on a particle-by-particle basis, such that each experimental track and cell had a one-to-one correspondence with their simulated counterpart. These simulations showed that the large intra- and inter-cellular variations in diffusivity could not be explained by experimental variability but could only be reproduced with stochastic models that assume a wide intra- and inter-cellular variation in cytoplasmic viscosity. The simulation combining intra- and inter-cellular variation in viscosity also predicted weak nonergodicity in GEM diffusion, consistent with the experimental data. To probe the origin of this variation, we found that the variance in GEM diffusivity was largely independent of factors such as temperature, the actin and microtubule cytoskeletons, cell-cyle stage, and spatial locations, but was magnified by hyperosmotic shocks. Taken together, our results provide a striking demonstration that the cytoplasm is not “well-mixed” but represents a highly heterogeneous environment in which subcellular components at the 40 nm size scale experience dramatically different effective viscosities within an individual cell, as well as in different cells in a genetically identical population. These findings carry significant implications for the origins and regulation of biological noise at cellular and subcellular levels.