Wiedenbeck Michael

No Thumbnail Available
Last Name
Wiedenbeck
First Name
Michael
ORCID

Search Results

Now showing 1 - 2 of 2
  • Preprint
    Effects of fluid-rock interaction on 40Ar/39Ar geochronology in high-pressure rocks (Sesia-Lanzo Zone, Western Alps)
    ( 2013-10-13) Halama, Ralf ; Konrad-Schmolke, Matthias ; Sudo, Masafumi ; Marschall, Horst R. ; Wiedenbeck, Michael
    in situ UV laser spot 40Ar/39Ar analyses of distinct phengite types in eclogite-facies rocks from the Sesia-Lanzo Zone (Western Alps, Italy) were combined with SIMS boron isotope analyses as well as boron (B) and lithium (Li) concentration data to link geochronological information with constraints on fluid-rock interaction. In weakly deformed samples, apparent 40Ar/39Ar ages of phengite cores span a range of ∼20 Ma, but inverse isochrons define two distinct main high-pressure (HP) phengite core crystallization periods of 88-82 Ma and 77-74 Ma, respectively. The younger cores have on average lower B contents (∼36 mg/g) than the older ones (∼43-48 mg/g), suggesting that loss of B and resetting of the Ar isotopic system were related. Phengite cores have variable d11B values (-18 to -10 ‰), indicating the lack of km scale B homogenization during HP crystallization. Overprinted phengite rims in the weakly deformed samples generally yield younger apparent 40Ar/39Ar ages than the respective cores. They also show variable effects of heterogeneous excess 40Ar incorporation and Ar loss. One acceptable inverse isochron age of 77.1 ±1.1 Ma for rims surrounding older cores (82.6 ±0.6 Ma) overlaps with the second period of core crystallization. Compared to the phengite cores, all rims have lower B and Li abundances but similar d11B values (-15 to -9 ‰), reflecting internal redistribution of B and Li and internal fluid buffering of the B isotopic composition during rim growth. The combined observation of younger 40Ar/39Ar ages and boron loss, yielding comparable values of both parameters only in cores and rims of different samples, is best explained by a selective metasomatic overprint. In low permeability samples, this overprint caused recrystallization of phengite rims, whereas higher permeability in other samples led to complete recrystallization of phengite grains. Strongly deformed samples from a several km long, blueschist-facies shear zone contain mylonitic phengite that forms a tightly clustered group of relatively young apparent 40Ar/39Ar ages (64.7 to 68.8 Ma), yielding an inverse isochron age of 65.0 ±3.0 Ma. Almost complete B and Li removal in mylonitic phengite is due to leaching into a fluid. The B isotopic composition is significantly heavier than in phengites from the weakly deformed samples, indicating an external control by a high-d11B fluid (d11B = +7 ±4 ‰). We interpret this result as reflecting phengite recrystallization related to deformation and associated fluid flow in the shear zone. This event also caused partial resetting of the Ar isotope system and further B loss in more permeable rocks of the adjacent unit. We conclude that geochemical evidence for pervasive or limited fluid flow is crucial for the interpretation of 40Ar/39Ar data in partially metasomatized rocks.
  • Article
    Tourmaline reference materials for the In situ analysis of oxygen and lithium isotope ratio compositions
    (International Association of Geoanalysts, 2020-10-19) Wiedenbeck, Michael ; Trumbull, Robert B. ; Rosner, Martin ; Boyce, Adrian ; Fournelle, John H. ; Franchi, Ian A. ; Halama, Ralf ; Harris, Chris ; Lacey, Jack H. ; Marschall, Horst R. ; Meixner, Anette ; Pack, Andreas ; Pogge von Strandmann, Philip A. E. ; Spicuzza, Michael J. ; Valley, John W. ; Wilke, Franziska D.H.
    Three tourmaline reference materials sourced from the Harvard Mineralogical and Geological Museum (schorl 112566, dravite 108796 and elbaite 98144), which are already widely used for the calibration of in situ boron isotope measurements, are characterised here for their oxygen and lithium isotope compositions. Homogeneity tests by secondary ion mass spectrometry (SIMS) showed that at sub‐nanogram test portion masses, their 18O/16O and 7Li/6Li isotope ratios are constant within ± 0.27‰ and ± 2.2‰ (1s), respectively. The lithium mass fractions of the three materials vary over three orders of magnitude. SIMS homogeneity tests showed variations in 7Li/28Si between 8% and 14% (1s), which provides a measure of the heterogeneity of the Li contents in these three materials. Here, we provide recommended values for δ18O, Δ’17O and δ7Li for the three Harvard tourmaline reference materials based on results from bulk mineral analyses from multiple, independent laboratories using laser‐ and stepwise fluorination gas mass spectrometry (for O), and solution multi‐collector inductively coupled plasma‐mass spectroscopy (for Li). These bulk data also allow us to assess the degree of inter‐laboratory bias that might be present in such data sets. This work also re‐evaluates the major element chemical composition of the materials by electron probe microanalysis and investigates these presence of a chemical matrix effect on SIMS instrumental mass fractionation with regard to δ18O determinations, which was found to be < 1.6‰ between these three materials. The final table presented here provides a summary of the isotope ratio values that we have determined for these three materials. Depending on their starting mass, either 128 or 512 splits have been produced of each material, assuring their availability for many years into the future.