Corson Erica D.

No Thumbnail Available
Last Name
Corson
First Name
Erica D.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Targeting, import, and dimerization of a mammalian mitochondrial ATP binding cassette (ABC) transporter, ABCB10 (ABC-me)
    (American Society for Biochemistry and Molecular Biology, 2004-06-23) Graf, Solomon A. ; Haigh, Sarah E. ; Corson, Erica D. ; Shirihai, Orian S.
    ATP binding cassette (ABC) transporters are a diverse superfamily of energy-dependent membrane translocases. Although responsible for the majority of transmembrane transport in bacteria, they are relatively uncommon in eukaryotic mitochondria. Organellar trafficking and import, in addition to quaternary structure assembly, of mitochondrial ABC transporters is poorly understood and may offer explanations for the paucity of their diversity. Here we examine these processes in ABCB10 (ABC-me), a mitochondrial inner membrane erythroid transporter involved in heme biosynthesis. We report that ABCB10 possesses an unusually long 105-amino acid mitochondrial targeting presequence (mTP). The central subdomain of the mTP (amino acids (aa) 36–70) is sufficient for mitochondrial import of enhanced green fluorescent protein. The N-terminal subdomain (aa 1–35) of the mTP, although not necessary for the trafficking of ABCB10 to mitochondria, participates in the proper import of the molecule into the inner membrane. We performed a series of amino acid mutations aimed at changing specific properties of the mTP. The mTP requires neither arginine residues nor predictable {alpha}-helices for efficient mitochondrial targeting. Disruption of its hydrophobic character by the mutation L46Q/I47Q, however, greatly diminishes its efficacy. This mutation can be rescued by cryptic downstream (aa 106–715) mitochondrial targeting signals, highlighting the redundancy of this protein's targeting qualities. Mass spectrometry analysis of chemically cross-linked, immunoprecipitated ABCB10 indicates that ABCB10 embedded in the mitochondrial inner membrane homodimerizes and homo-oligomerizes. A deletion mutant of ABCB10 that lacks its mTP efficiently targets to the endoplasmic reticulum. Quaternary structure assembly of ABCB10 in the ER appears to be similar to that in the mitochondria.
  • Preprint
    Electrokinetic measurements of membrane capacitance and conductance for pancreatic β-cells
    ( 2005-10-31) Pethig, Ronald ; Jakubek, L. M. ; Sanger, R. H. ; Heart, E. ; Corson, Erica D. ; Smith, Peter J. S.
    Membrane capacitance and membrane conductance values are reported for insulin secreting cells (primary β-cells and INS-1 insulinoma cells) determined using the methods of dielectrophoresis and electrorotation. The membrane capacitance value of 12.57 (± 1.46) mF/m2 obtained for β-cells, and the values 9.96 (± 1.89) mF/m2 to 10.65 (± 2.1) mF/m2 obtained for INS-1 cells, fall within the range expected for mammalian cells. The electrorotation results for the INS-1 cells lead to a value of 36 (± 22) S/m2 for the membrane conductance associated with ion channels, if values in the range 2nS to 3 nS are assumed for the membrane surface conductance. This membrane conductance value falls within the range reported for INS cells obtained using the whole-cell patch-clamp technique. However, the total ‘effective’ membrane conductance value of 601 (± 182) S/m2 obtained for the INS-1 cells by dielectrophoresis is significantly larger (by a factor of around three-fold) than the values obtained by electrorotation. This could result from an increased membrane surface conductance, or increased passive conduction of ions through membrane pores, induced by the larger electric field stresses experienced by cells in the dielectrophoresis experiments.