Groen Aaron C.

No Thumbnail Available
Last Name
Groen
First Name
Aaron C.
ORCID

Search Results

Now showing 1 - 7 of 7
  • Article
    Functional overlap of microtubule assembly factors in chromatin-promoted spindle assembly
    (American Society for Cell Biology, 2009-04-15) Groen, Aaron C. ; Maresca, Thomas J. ; Gatlin, Jesse C. ; Salmon, Edward D. ; Mitchison, Timothy J.
    Distinct pathways from centrosomes and chromatin are thought to contribute in parallel to microtubule nucleation and stabilization during animal cell mitotic spindle assembly, but their full mechanisms are not known. We investigated the function of three proposed nucleation/stabilization factors, TPX2, {gamma}-tubulin and XMAP215, in chromatin-promoted assembly of anastral spindles in Xenopus laevis egg extract. In addition to conventional depletion-add back experiments, we tested whether factors could substitute for each other, indicative of functional redundancy. All three factors were required for microtubule polymerization and bipolar spindle assembly around chromatin beads. Depletion of TPX2 was partially rescued by the addition of excess XMAP215 or EB1, or inhibiting MCAK (a Kinesin-13). Depletion of either {gamma}-tubulin or XMAP215 was partially rescued by adding back XMAP215, but not by adding any of the other factors. These data reveal functional redundancy between specific assembly factors in the chromatin pathway, suggesting individual proteins or pathways commonly viewed to be essential may not have entirely unique functions.
  • Article
    Spindle-to-cortex communication in cleaving, polyspermic Xenopus eggs
    (American Society for Cell Biology, 2015-10-15) Field, Christine M. ; Groen, Aaron C. ; Nguyen, Phuong A. ; Mitchison, Timothy J.
    Mitotic spindles specify cleavage planes in early embryos by communicating their position and orientation to the cell cortex using microtubule asters that grow out from the spindle poles during anaphase. Chromatin also plays a poorly understood role. Polyspermic fertilization provides a natural experiment in which aster pairs from the same spindle (sister asters) have chromatin between them, whereas asters pairs from different spindles (nonsisters) do not. In frogs, only sister aster pairs induce furrows. We found that only sister asters recruited two conserved furrow-inducing signaling complexes, chromosome passenger complex (CPC) and Centralspindlin, to a plane between them. This explains why only sister pairs induce furrows. We then investigated factors that influenced CPC recruitment to microtubule bundles in intact eggs and a cytokinesis extract system. We found that microtubule stabilization, optimal starting distance between asters, and proximity to chromatin all favored CPC recruitment. We propose a model in which proximity to chromatin biases initial CPC recruitment to microtubule bundles between asters from the same spindle. Next a positive feedback between CPC recruitment and microtubule stabilization promotes lateral growth of a plane of CPC-positive microtubule bundles out to the cortex to position the furrow.
  • Preprint
    Using supported bilayers to study the spatiotemporal organization of membrane-bound proteins
    ( 2015-01) Nguyen, Phuong A. ; Field, Christine M. ; Groen, Aaron C. ; Mitchison, Timothy J. ; Loose, Martin
    Cell division in prokaryotes and eukaryotes is commonly initiated by the well-controlled binding of proteins to the cytoplasmic side of the cell membrane. However, a precise characterization of the spatiotemporal dynamics of membrane-bound proteins is often difficult to achieve in vivo. Here, we present protocols for the use of supported lipid bilayers to rebuild the cytokinetic machineries of cells with greatly different dimensions: the bacterium Escherichia coli and eggs of the vertebrate Xenopus laevis. Combined with total internal reflection fluorescence (TIRF) microscopy, these experimental setups allow for precise quantitative analyses of membrane-bound proteins. The protocols described to obtain glass-supported membranes from bacterial and vertebrate lipids can be used as starting points for other reconstitution experiments. We believe that similar biochemical assays will be instrumental to study the biochemistry and biophysics underlying a variety of complex cellular tasks, such as signaling, vesicle trafficking and cell motility.
  • Article
    Roles of polymerization dynamics, opposed motors, and a tensile element in governing the length of Xenopus extract meiotic spindles
    (American Society for Cell Biology, 2005-03-23) Mitchison, Timothy J. ; Maddox, P. ; Gaetz, J. ; Groen, Aaron C. ; Shirasu, M. ; Desai, Ankur R. ; Salmon, Edward D. ; Kapoor, Tarun M.
    Metaphase spindles assemble to a steady state in length by mechanisms that involve microtubule dynamics and motor proteins, but they are incompletely understood. We found that Xenopus extract spindles recapitulate the length of egg meiosis II spindles, by using mechanisms intrinsic to the spindle. To probe these mechanisms, we perturbed microtubule polymerization dynamics and opposed motor proteins and measured effects on spindle morphology and dynamics. Microtubules were stabilized by hexylene glycol and inhibition of the catastrophe factor mitotic centromere-associated kinesin (MCAK) (a kinesin 13, previously called XKCM) and destabilized by depolymerizing drugs. The opposed motors Eg5 and dynein were inhibited separately and together. Our results are consistent with important roles for polymerization dynamics in regulating spindle length, and for opposed motors in regulating the relative stability of bipolar versus monopolar organization. The response to microtubule destabilization suggests that an unidentified tensile element acts in parallel with these conventional factors, generating spindle shortening force.
  • Article
    Bipolarization and poleward flux correlate during xenopus extract spindle assembly
    (American Society for Cell Biology, 2004-09-22) Mitchison, Timothy J. ; Maddox, P. ; Groen, Aaron C. ; Cameron, Lisa ; Perlman, Z. ; Ohi, Ryoma ; Desai, Ankur R. ; Salmon, Edward D. ; Kapoor, Tarun M.
    We investigated the mechanism by which meiotic spindles become bipolar and the correlation between bipolarity and poleward flux, using Xenopus egg extracts. By speckle microscopy and computational alignment, we find that monopolar sperm asters do not show evidence for flux, partially contradicting previous work. We account for the discrepancy by describing spontaneous bipolarization of sperm asters that was missed previously. During spontaneous bipolarization, onset of flux correlated with onset of bipolarity, implying that antiparallel microtubule organization may be required for flux. Using a probe for TPX2 in addition to tubulin, we describe two pathways that lead to spontaneous bipolarization, new pole assembly near chromatin, and pole splitting. By inhibiting the Ran pathway with excess importin-alpha, we establish a role for chromatin-derived, antiparallel overlap bundles in generating the sliding force for flux, and we examine these bundles by electron microscopy. Our results highlight the importance of two processes, chromatin-initiated microtubule nucleation, and sliding forces generated between antiparallel microtubules, in self-organization of spindle bipolarity and poleward flux.
  • Preprint
    Spindle assembly in the absence of a RanGTP gradient requires localized CPC activity
    ( 2009-05) Maresca, Thomas J. ; Groen, Aaron C. ; Gatlin, Jesse C. ; Ohi, Ryoma ; Mitchison, Timothy J. ; Salmon, Edward D.
    During animal cell division, a gradient of GTP-bound Ran is generated around mitotic chromatin. It is generally accepted that this RanGTP gradient is essential for organizing the spindle since it locally activates critical spindle assembly factors. Here, we show in Xenopus egg extract, where the gradient is best characterized, that spindles can assemble in the absence of a RanGTP gradient. Gradient-free spindle assembly occurred around sperm nuclei but not around chromatin-coated beads and required the chromosomal passenger complex (CPC). Artificial enrichment of CPC activity within hybrid bead arrays containing both immobilized chromatin and the CPC supported local microtubule assembly even in the absence of a RanGTP gradient. We conclude that RanGTP and the CPC constitute the two major molecular signals that spatially promote microtubule polymerization around chromatin. Furthermore, we hypothesize that the two signals mainly originate from discreet physical sites on the chromosomes to localize microtubule assembly around chromatin: a RanGTP signal from any chromatin, and a CPC-dependent signal predominantly generated from centromeric chromatin.
  • Article
    Self-organization of stabilized microtubules by both spindle and midzone mechanisms in Xenopus egg cytosol
    (American Society for Cell Biology, 2013-03-20) Mitchison, Timothy J. ; Nguyen, Phuong A. ; Coughlin, Margaret ; Groen, Aaron C.
    Previous study of self-organization of Taxol-stabilized microtubules into asters in Xenopus meiotic extracts revealed motor-dependent organizational mechanisms in the spindle. We revisit this approach using clarified cytosol with glycogen added back to supply energy and reducing equivalents. We added probes for NUMA and Aurora B to reveal microtubule polarity. Taxol and dimethyl sulfoxide promote rapid polymerization of microtubules that slowly self-organize into assemblies with a characteristic morphology consisting of paired lines or open circles of parallel bundles. Minus ends align in NUMA-containing foci on the outside, and plus ends in Aurora B–containing foci on the inside. Assemblies have a well-defined width that depends on initial assembly conditions, but microtubules within them have a broad length distribution. Electron microscopy shows that plus-end foci are coated with electron-dense material and resemble similar foci in monopolar midzones in cells. Functional tests show that two key spindle assembly factors, dynein and kinesin-5, act during assembly as they do in spindles, whereas two key midzone assembly factors, Aurora B and Kif4, act as they do in midzones. These data reveal the richness of self-organizing mechanisms that operate on microtubules after they polymerize in meiotic cytoplasm and provide a biochemically tractable system for investigating plus-end organization in midzones.