Follows Michael J.

No Thumbnail Available
Last Name
Follows
First Name
Michael J.
ORCID

Search Results

Now showing 1 - 20 of 20
Thumbnail Image
Article

Diel light cycles affect phytoplankton competition in the global ocean

2022-07-02 , Tsakalakis, Ioannis , Follows, Michael J. , Dutkiewicz, Stephanie , Follett, Christopher L. , Vallino, Joseph J.

Aim Light, essential for photosynthesis, is present in two periodic cycles in nature: seasonal and diel. Although seasonality of light is typically resolved in ocean biogeochemical–ecosystem models because of its significance for seasonal succession and biogeography of phytoplankton, the diel light cycle is generally not resolved. The goal of this study is to demonstrate the impact of diel light cycles on phytoplankton competition and biogeography in the global ocean. Location Global ocean. Major taxa studied Phytoplankton. Methods We use a three-dimensional global ocean model and compare simulations of high temporal resolution with and without diel light cycles. The model simulates 15 phytoplankton types with different cell sizes, encompassing two broad ecological strategies: small cells with high nutrient affinity (gleaners) and larger cells with high maximal growth rate (opportunists). Both are grazed by zooplankton and limited by nitrogen, phosphorus and iron. Results Simulations show that diel cycles of light induce diel cycles in limiting nutrients in the global ocean. Diel nutrient cycles are associated with higher concentrations of limiting nutrients, by 100% at low latitudes (−40° to 40°), a process that increases the relative abundance of opportunists over gleaners. Size classes with the highest maximal growth rates from both gleaner and opportunist groups are favoured by diel light cycles. This mechanism weakens as latitude increases, because the effects of the seasonal cycle dominate over those of the diel cycle. Main conclusions Understanding the mechanisms that govern phytoplankton biogeography is crucial for predicting ocean ecosystem functioning and biogeochemical cycles. We show that the diel light cycle has a significant impact on phytoplankton competition and biogeography, indicating the need for understanding the role of diel processes in shaping macroecological patterns in the global ocean.

Thumbnail Image
Article

Modeling transport and fate of riverine dissolved organic carbon in the Arctic Ocean

2009-10-07 , Manizza, Manfredi , Follows, Michael J. , Dutkiewicz, Stephanie , McClelland, James W. , Menemenlis, Dimitris , Hill, C. N. , Townsend-Small, Amy , Peterson, Bruce J.

The spatial distribution and fate of riverine dissolved organic carbon (DOC) in the Arctic may be significant for the regional carbon cycle but are difficult to fully characterize using the sparse observations alone. Numerical models of the circulation and biogeochemical cycles of the region can help to interpret and extrapolate the data and may ultimately be applied in global change sensitivity studies. Here we develop and explore a regional, three-dimensional model of the Arctic Ocean in which, for the first time, we explicitly represent the sources of riverine DOC with seasonal discharge based on climatological field estimates. Through a suite of numerical experiments, we explore the distribution of DOC-like tracers with realistic riverine sources and a simple linear decay to represent remineralization through microbial degradation. The model reproduces the slope of the DOC-salinity relationship observed in the eastern and western Arctic basins when the DOC tracer lifetime is about 10 years, consistent with published inferences from field data. The new empirical parameterization of riverine DOC and the regional circulation and biogeochemical model provide new tools for application in both regional and global change studies.

Thumbnail Image
Article

Impact of oceanic circulation on biological carbon storage in the ocean and atmospheric pCO2

2008-07-23 , Marinov, Irina , Gnanadesikan, Anand , Sarmiento, Jorge L. , Toggweiler, J. R. , Follows, Michael J. , Mignone, B. K.

We use both theory and ocean biogeochemistry models to examine the role of the soft-tissue biological pump in controlling atmospheric CO2. We demonstrate that atmospheric CO2 can be simply related to the amount of inorganic carbon stored in the ocean by the soft-tissue pump, which we term (OCS soft ). OCS soft is linearly related to the inventory of remineralized nutrient, which in turn is just the total nutrient inventory minus the preformed nutrient inventory. In a system where total nutrient is conserved, atmospheric CO2 can thus be simply related to the global inventory of preformed nutrient. Previous model simulations have explored how changes in the surface concentration of nutrients in deepwater formation regions change the global preformed nutrient inventory. We show that changes in physical forcing such as winds, vertical mixing, and lateral mixing can shift the balance of deepwater formation between the North Atlantic (where preformed nutrients are low) and the Southern Ocean (where they are high). Such changes in physical forcing can thus drive large changes in atmospheric CO2, even with minimal changes in surface nutrient concentration. If Southern Ocean deepwater formation strengthens, the preformed nutrient inventory and thus atmospheric CO2 increase. An important consequence of these new insights is that the relationship between surface nutrient concentrations, biological export production, and atmospheric CO2 is more complex than previously predicted. Contrary to conventional wisdom, we show that OCS soft can increase and atmospheric CO2 decrease, while surface nutrients show minimal change and export production decreases.

Thumbnail Image
Article

Inverse estimates of the oceanic sources and sinks of natural CO2 and the implied oceanic carbon transport

2007-02-10 , Mikaloff Fletcher, Sara E. , Gruber, Nicolas , Jacobson, Andrew R. , Gloor, Emanuel , Doney, Scott C. , Dutkiewicz, Stephanie , Gerber, Markus , Follows, Michael J. , Joos, Fortunat , Lindsay, Keith , Menemenlis, Dimitris , Mouchet, Anne , Muller, Simon A. , Sarmiento, Jorge L.

We use an inverse method to estimate the global-scale pattern of the air-sea flux of natural CO2, i.e., the component of the CO2 flux due to the natural carbon cycle that already existed in preindustrial times, on the basis of ocean interior observations of dissolved inorganic carbon (DIC) and other tracers, from which we estimate ΔC gasex , i.e., the component of the observed DIC that is due to the gas exchange of natural CO2. We employ a suite of 10 different Ocean General Circulation Models (OGCMs) to quantify the error arising from uncertainties in the modeled transport required to link the interior ocean observations to the surface fluxes. The results from the contributing OGCMs are weighted using a model skill score based on a comparison of each model's simulated natural radiocarbon with observations. We find a pattern of air-sea flux of natural CO2 characterized by outgassing in the Southern Ocean between 44°S and 59°S, vigorous uptake at midlatitudes of both hemispheres, and strong outgassing in the tropics. In the Northern Hemisphere and the tropics, the inverse estimates generally agree closely with the natural CO2 flux results from forward simulations of coupled OGCM-biogeochemistry models undertaken as part of the second phase of the Ocean Carbon Model Intercomparison Project (OCMIP-2). The OCMIP-2 simulations find far less air-sea exchange than the inversion south of 20°S, but more recent forward OGCM studies are in better agreement with the inverse estimates in the Southern Hemisphere. The strong source and sink pattern south of 20°S was not apparent in an earlier inversion study, because the choice of region boundaries led to a partial cancellation of the sources and sinks. We show that the inversely estimated flux pattern is clearly traceable to gradients in the observed ΔC gasex , and that it is relatively insensitive to the choice of OGCM or potential biases in ΔC gasex . Our inverse estimates imply a southward interhemispheric transport of 0.31 ± 0.02 Pg C yr−1, most of which occurs in the Atlantic. This is considerably smaller than the 1 Pg C yr−1 of Northern Hemisphere uptake that has been inferred from atmospheric CO2 observations during the 1980s and 1990s, which supports the hypothesis of a Northern Hemisphere terrestrial sink.

Thumbnail Image
Article

On the temperature dependence of oceanic export efficiency

2016-05-18 , Cael, B. Barry , Follows, Michael J.

Quantifying the fraction of primary production exported from the euphotic layer (termed the export efficiency ef) is a complicated matter. Studies have suggested empirical relationships with temperature which offer attractive potential for parameterization. Here we develop what is arguably the simplest mechanistic model relating the two, using established thermodynamic dependencies for primary production and respiration. It results in a single-parameter curve that constrains the envelope of possible efficiencies, capturing the upper bounds of several ef-T data sets. The approach provides a useful theoretical constraint on this relationship and extracts the variability in ef due to temperature but does not idealize out the remaining variability which evinces the substantial complexity of the system in question.

Thumbnail Image
Article

Modeling the global ocean iron cycle

2004-01-07 , Parekh, Payal , Follows, Michael J. , Boyle, Edward A.

We describe a model of the ocean transport and biogeochemical cycling of iron and the subsequent control on export production and macronutrient distributions. Ocean transport of phosphorus and iron are represented by a highly idealized six-box ocean model. Export production is parameterized simply; it is limited by light, phosphate, and iron availability in the surface ocean. We prescribe the regional variations in aeolian deposition of iron and examine three parameterizations of iron cycling in the deep ocean: (1) net scavenging onto particles, the simplest model; (2) scavenging and desorption of iron to and from particles, analogous to thorium; and (3) complexation. Provided that some unknown parameter values can be set appropriately, all three biogeochemical models are capable of reproducing the broad features of the iron distribution observed in the modern ocean and explicitly lead to regions of elevated surface phosphate, particularly in the Southern Ocean. We compare the sensitivity of Southern Ocean surface macronutrient concentration to increased aeolian dust supply for each parameterization. Both scavenging-based representations respond to increasing dust supply with a drawdown of surface phosphate in an almost linear relationship. The complexation parameterization, however, asymptotes toward a limited drawdown of phosphate under the assumption that ligand production does not respond to increased dust flux. In the scavenging based models, deep water iron concentrations and, therefore, upwelled iron continually increase with greater dust supply. In contrast, the availability of complexing ligand provides an upper limit for the deep water iron concentration in the latter model.

Thumbnail Image
Article

Reverse engineering environmental metatranscriptomes clarifies best practices for eukaryotic assembly

2023-03-03 , Krinos, Arianna I. , Cohen, Natalie R. , Follows, Michael J. , Alexander, Harriet

Diverse communities of microbial eukaryotes in the global ocean provide a variety of essential ecosystem services, from primary production and carbon flow through trophic transfer to cooperation via symbioses. Increasingly, these communities are being understood through the lens of omics tools, which enable high-throughput processing of diverse communities. Metatranscriptomics offers an understanding of near real-time gene expression in microbial eukaryotic communities, providing a window into community metabolic activity.Here we present a workflow for eukaryotic metatranscriptome assembly, and validate the ability of the pipeline to recapitulate real and manufactured eukaryotic community-level expression data. We also include an open-source tool for simulating environmental metatranscriptomes for testing and validation purposes. We reanalyze previously published metatranscriptomic datasets using our metatranscriptome analysis approach.We determined that a multi-assembler approach improves eukaryotic metatranscriptome assembly based on recapitulated taxonomic and functional annotations from an in-silico mock community. The systematic validation of metatranscriptome assembly and annotation methods provided here is a necessary step to assess the fidelity of our community composition measurements and functional content assignments from eukaryotic metatranscriptomes.

Thumbnail Image
Preprint

An analysis of the carbon balance of the Arctic Basin from 1997 to 2006

2010-06-18 , McGuire, A. David , Hayes, Daniel J. , Kicklighter, David W. , Manizza, Manfredi , Zhuang, Qianlai , Chen, Min , Follows, Michael J. , Gurney, Kevin R. , McClelland, James W. , Melillo, Jerry M. , Peterson, Bruce J. , Prinn, Ronald G.

This study used several model-based tools to analyze the dynamics of the Arctic Basin between 1997 and 2006 as a linked system of land-ocean-atmosphere C exchange. The analysis estimates that terrestrial areas of the Arctic Basin lost 62.9 Tg C yr-1 and that the Arctic Ocean gained 94.1 Tg C yr-1. Arctic lands and oceans were a net CO2 sink of 108.9 Tg C yr-1, which is within the range of uncertainty in estimates from atmospheric inversions. Although both lands and oceans of the Arctic were estimated to be CO2 sinks, the land sink diminished in strength because of increased fire disturbance compared to previous decades, while the ocean sink increased in strength because of increased biological pump activity associated with reduced sea ice cover. Terrestrial areas of the Arctic were a net source of 41.5 Tg CH4 yr-1 that increased by 0.6 Tg CH4 yr-1 during the decade of analysis, a magnitude that is comparable with an atmospheric inversion of CH4. Because the radiative forcing of the estimated CH4 emissions is much greater than the CO2 sink, the analysis suggests that the Arctic Basin is a substantial net source of green house gas forcing to the climate system.

Thumbnail Image
Article

How does ocean biology affect atmospheric pCO2? Theory and models

2008-07-22 , Marinov, Irina , Follows, Michael J. , Gnanadesikan, Anand , Sarmiento, Jorge L. , Slater, Richard D.

This paper examines the sensitivity of atmospheric pCO2 to changes in ocean biology that result in drawdown of nutrients at the ocean surface. We show that the global inventory of preformed nutrients is the key determinant of atmospheric pCO2 and the oceanic carbon storage due to the soft-tissue pump (OCS soft ). We develop a new theory showing that under conditions of perfect equilibrium between atmosphere and ocean, atmospheric pCO2 can be written as a sum of exponential functions of OCS soft . The theory also demonstrates how the sensitivity of atmospheric pCO2 to changes in the soft-tissue pump depends on the preformed nutrient inventory and on surface buffer chemistry. We validate our theory against simulations of nutrient depletion in a suite of realistic general circulation models (GCMs). The decrease in atmospheric pCO2 following surface nutrient depletion depends on the oceanic circulation in the models. Increasing deep ocean ventilation by increasing vertical mixing or Southern Ocean winds increases the atmospheric pCO2 sensitivity to surface nutrient forcing. Conversely, stratifying the Southern Ocean decreases the atmospheric CO2 sensitivity to surface nutrient depletion. Surface CO2 disequilibrium due to the slow gas exchange with the atmosphere acts to make atmospheric pCO2 more sensitive to nutrient depletion in high-ventilation models and less sensitive to nutrient depletion in low-ventilation models. Our findings have potentially important implications for both past and future climates.

Thumbnail Image
Article

Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean

2006-04-05 , Mikaloff Fletcher, Sara E. , Gruber, Nicolas , Jacobson, Andrew R. , Doney, Scott C. , Dutkiewicz, Stephanie , Gerber, Markus , Follows, Michael J. , Joos, Fortunat , Lindsay, Keith , Menemenlis, Dimitris , Mouchet, Anne , Muller, Simon A. , Sarmiento, Jorge L.

Regional air-sea fluxes of anthropogenic CO2 are estimated using a Green's function inversion method that combines data-based estimates of anthropogenic CO2 in the ocean with information about ocean transport and mixing from a suite of Ocean General Circulation Models (OGCMs). In order to quantify the uncertainty associated with the estimated fluxes owing to modeled transport and errors in the data, we employ 10 OGCMs and three scenarios representing biases in the data-based anthropogenic CO2 estimates. On the basis of the prescribed anthropogenic CO2 storage, we find a global uptake of 2.2 ± 0.25 Pg C yr−1, scaled to 1995. This error estimate represents the standard deviation of the models weighted by a CFC-based model skill score, which reduces the error range and emphasizes those models that have been shown to reproduce observed tracer concentrations most accurately. The greatest anthropogenic CO2 uptake occurs in the Southern Ocean and in the tropics. The flux estimates imply vigorous northward transport in the Southern Hemisphere, northward cross-equatorial transport, and equatorward transport at high northern latitudes. Compared with forward simulations, we find substantially more uptake in the Southern Ocean, less uptake in the Pacific Ocean, and less global uptake. The large-scale spatial pattern of the estimated flux is generally insensitive to possible biases in the data and the models employed. However, the global uptake scales approximately linearly with changes in the global anthropogenic CO2 inventory. Considerable uncertainties remain in some regions, particularly the Southern Ocean.

Thumbnail Image
Article

Evaluation of ocean carbon cycle models with data-based metrics

2004-04-02 , Matsumoto, K. , Sarmiento, Jorge L. , Key, Robert M. , Aumont, Olivier , Bullister, John L. , Caldeira, Ken , Campin, J.-M. , Doney, Scott C. , Drange, Helge , Dutay, J.-C. , Follows, Michael J. , Gao, Y. , Gnanadesikan, Anand , Gruber, Nicolas , Ishida, Akio , Joos, Fortunat , Lindsay, Keith , Maier-Reimer, Ernst , Marshall, John C. , Matear, Richard J. , Monfray, Patrick , Mouchet, Anne , Najjar, Raymond G. , Plattner, Gian-Kasper , Schlitzer, Reiner , Slater, Richard D. , Swathi, P. S. , Totterdell, Ian J. , Weirig, Marie-France , Yamanaka, Yasuhiro , Yool, Andrew , Orr, James C.

New radiocarbon and chlorofluorocarbon-11 data from the World Ocean Circulation Experiment are used to assess a suite of 19 ocean carbon cycle models. We use the distributions and inventories of these tracers as quantitative metrics of model skill and find that only about a quarter of the suite is consistent with the new data-based metrics. This should serve as a warning bell to the larger community that not all is well with current generation of ocean carbon cycle models. At the same time, this highlights the danger in simply using the available models to represent the state-of-the-art modeling without considering the credibility of each model.

Thumbnail Image
Book

Report on the “Trait-based approaches to ocean life” scoping workshop, October 5-8, 2015

2016-05 , Barton, Andrew D. , Dutkiewicz, Stephanie , Andersen, Ken H. , Fiksen, Øyvind Ø. F. , Follows, Michael J. , Mouw, Colleen B. , Record, Nicholas R. , Rynearson, Tatiana A.

From the introduction: Marine ecosystems are rich and biodiverse, often populated by thousands of competing and interacting species with a vast range of behaviors, forms, and life histories. This great ecological complexity presents a formidable challenge to understanding how marine ecosystems are structured and controlled, but also how they respond to natural and anthropogenic changes. The trait-based approach to ocean life is emerging as a novel framework for understanding the complexity, structure, and dynamics of marine ecosystems, but also their broader significance. Rather than considering species individually, organisms are characterized by essential traits that capture key aspects of diversity. Trait distributions in the ocean emerge through evolution and natural selection, and are mediated by the environment, biological interactions, anthropogenic drivers, and organism behavior. Because trait variations within and across communities lead to variation in the rates of crucial ecosystem functions such as carbon export, this mechanistic approach sheds light on how variability in the environment, including climate change, impacts marine ecosystems, biogeochemical cycles, and associated feedbacks to climate and society.

Thumbnail Image
Article

Quantifying oxygen management and temperature and light dependencies of nitrogen fixation by Crocosphaera watsonii

2019-12-11 , Inomura, Keisuke , Deutsch, Curtis A. , Wilson, Samuel T. , Masuda, Takako , Lawrenz, Evelyn , Bučinská, Lenka , Sobotka, Roman , Gauglitz, Julia M. , Saito, Mak A. , Prášil, Ondřej , Follows, Michael J.

Crocosphaera is a major dinitrogen (N2)-fixing microorganism, providing bioavailable nitrogen (N) to marine ecosystems. The N2-fixing enzyme nitrogenase is deactivated by oxygen (O2), which is abundant in marine environments. Using a cellular scale model of Crocosphaera sp. and laboratory data, we quantify the role of three O2 management strategies by Crocosphaera sp.: size adjustment, reduced O2 diffusivity, and respiratory protection. Our model predicts that Crocosphaera cells increase their size under high O2. Using transmission electron microscopy, we show that starch granules and thylakoid membranes are located near the cytoplasmic membranes, forming a barrier for O2. The model indicates a critical role for respiration in protecting the rate of N2 fixation. Moreover, the rise in respiration rates and the decline in ambient O2 with temperature strengthen this mechanism in warmer water, providing a physiological rationale for the observed niche of Crocosphaera at temperatures exceeding 20°C. Our new measurements of the sensitivity to light intensity show that the rate of N2 fixation reaches saturation at a lower light intensity (∼100 μmol m−2 s−1) than photosynthesis and that both are similarly inhibited by light intensities of >500 μmol m−2 s−1. This suggests an explanation for the maximum population of Crocosphaera occurring slightly below the ocean surface.

Thumbnail Image
Article

Challenges and opportunities in connecting gene count observations with ocean biogeochemical models: Reply to Zehr and Riemann (2023)

2023-05-08 , Meiler, Simona , Britten, Gregory L. , Dutkiewicz, Stephanie , Moisander, Pia H. , Follows, Michael J.

As authors of Meiler et al. (2022), we welcome Zehr and Riemann's (2023) comment and discussion. We agree, of course, with the general statement that “quantification of gene copy numbers is valuable in marine microbial ecology” and wish to clarify that one of the purposes of Meiler et al. (2022) was to address the specific challenge of using a compilation of quantitative polymerase chain reaction (qPCR) nifH data to evaluate the skill of biogeochemical models. In that particular case, the data were most helpful in constraining the range of diazotrophs, but several sources of uncertainty limited more detailed quantitative evaluations. This was not intended to imply a lack of value or promise for such applications of qPCR data: we believe that testing and constraining biogeochemical and ecological models will be an important application of qPCR data, yet the quantitative interface between molecular data and biogeochemical models remains at its infancy. In the following, we first provide a background perspective for the Meiler et al. (2022) study, pointing out why observations and simulations are rooted in different currencies. We then discuss in more detail some of the specific points raised by Zehr and Riemann (2023) and highlight why further efforts toward intercalibration of currencies used to measure and simulate marine microbial populations is particularly significant if we are to fully exploit the data in biogeochemical and climate modeling applications. We end by summarizing some potentially fruitful avenues for future effort stimulated by this dialog.

Thumbnail Image
Article

Oceanic sources, sinks, and transport of atmospheric CO2

2009-02-18 , Gruber, Nicolas , Gloor, Emanuel , Mikaloff Fletcher, Sara E. , Doney, Scott C. , Dutkiewicz, Stephanie , Follows, Michael J. , Gerber, Markus , Jacobson, Andrew R. , Joos, Fortunat , Lindsay, Keith , Menemenlis, Dimitris , Mouchet, Anne , Muller, Simon A. , Sarmiento, Jorge L. , Takahashi, Taro

We synthesize estimates of the contemporary net air-sea CO2 flux on the basis of an inversion of interior ocean carbon observations using a suite of 10 ocean general circulation models (Mikaloff Fletcher et al., 2006, 2007) and compare them to estimates based on a new climatology of the air-sea difference of the partial pressure of CO2 (pCO2) (Takahashi et al., 2008). These two independent flux estimates reveal a consistent description of the regional distribution of annual mean sources and sinks of atmospheric CO2 for the decade of the 1990s and the early 2000s with differences at the regional level of generally less than 0.1 Pg C a−1. This distribution is characterized by outgassing in the tropics, uptake in midlatitudes, and comparatively small fluxes in thehigh latitudes. Both estimates point toward a small (∼ −0.3 Pg C a−1) contemporary CO2 sink in the Southern Ocean (south of 44°S), a result of the near cancellation between a substantial outgassing of natural CO2 and a strong uptake of anthropogenic CO2. A notable exception in the generally good agreement between the two estimates exists within the Southern Ocean: the ocean inversion suggests a relatively uniform uptake, while the pCO2-based estimate suggests strong uptake in the region between 58°S and 44°S, and a source in the region south of 58°S. Globally and for a nominal period between 1995 and 2000, the contemporary net air-sea flux of CO2 is estimated to be −1.7 ± 0.4 Pg C a−1 (inversion) and −1.4 ± 0.7 Pg C a−1 (pCO2-climatology), respectively, consisting of an outgassing flux of river-derived carbon of ∼+0.5 Pg C a−1, and an uptake flux of anthropogenic carbon of −2.2 ± 0.3 Pg C a−1 (inversion) and −1.9 ± 0.7 Pg C a−1 (pCO2-climatology). The two flux estimates also imply a consistent description of the contemporary meridional transport of carbon with southward ocean transport throughout most of the Atlantic basin, and strong equatorward convergence in the Indo-Pacific basins. Both transport estimates suggest a small hemispheric asymmetry with a southward transport of between −0.2 and −0.3 Pg C a−1 across the equator. While the convergence of these two independent estimates is encouraging and suggests that it is now possible to provide relatively tight constraints for the net air-sea CO2 fluxes at the regional basis, both studies are limited by their lack of consideration of long-term changes in the ocean carbon cycle, such as the recent possible stalling in the expected growth of the Southern Ocean carbon sink.

Thumbnail Image
Article

Marine virus-like particles and microbes : a linear interpretation

2018-03-01 , Cael, B. Barry , Carlson, Michael C. G. , Follett, Christopher L. , Follows, Michael J.

Viruses are key players in ocean ecology and biogeochemistry, not only because of their functional roles but also partially due to their sheer abundance (Fuhrman, 1999; Wilhelm and Suttle, 1999). Because viruses cannot replicate without their hosts' machinery, their abundance is inextricably related to that of their (mostly microbial) hosts. The relationship between viral and microbial abundances is thus of great interest.

Thumbnail Image
Article

Stable aerobic and anaerobic coexistence in anoxic marine zones

2019-10-17 , Zakem, Emily J. , Mahadevan, Amala , Lauderdale, Jonathan M. , Follows, Michael J.

Mechanistic description of the transition from aerobic to anaerobic metabolism is necessary for diagnostic and predictive modeling of fixed nitrogen loss in anoxic marine zones (AMZs). In a metabolic model where diverse oxygen- and nitrogen-cycling microbial metabolisms are described by underlying redox chemical reactions, we predict a transition from strictly aerobic to predominantly anaerobic regimes as the outcome of ecological interactions along an oxygen gradient, obviating the need for prescribed critical oxygen concentrations. Competing aerobic and anaerobic metabolisms can coexist in anoxic conditions whether these metabolisms represent obligate or facultative populations. In the coexistence regime, relative rates of aerobic and anaerobic activity are determined by the ratio of oxygen to electron donor supply. The model simulates key characteristics of AMZs, such as the accumulation of nitrite and the sustainability of anammox at higher oxygen concentrations than denitrification, and articulates how microbial biomass concentrations relate to associated water column transformation rates as a function of redox stoichiometry and energetics. Incorporating the metabolic model into an idealized two-dimensional ocean circulation results in a simulated AMZ, in which a secondary chlorophyll maximum emerges from oxygen-limited grazing, and where vertical mixing and dispersal in the oxycline also contribute to metabolic co-occurrence. The modeling approach is mechanistic yet computationally economical and suitable for global change applications.

Thumbnail Image
Article

Evaluating global ocean carbon models : the importance of realistic physics

2004-09-15 , Doney, Scott C. , Lindsay, Keith , Caldeira, Ken , Campin, J.-M. , Drange, Helge , Dutay, J.-C. , Follows, Michael J. , Gao, Y. , Gnanadesikan, Anand , Gruber, Nicolas , Ishida, Akio , Joos, Fortunat , Madec, G. , Maier-Reimer, Ernst , Marshall, John C. , Matear, Richard J. , Monfray, Patrick , Mouchet, Anne , Najjar, Raymond G. , Orr, James C. , Plattner, Gian-Kasper , Sarmiento, Jorge L. , Schlitzer, Reiner , Slater, Richard D. , Totterdell, Ian J. , Weirig, Marie-France , Yamanaka, Yasuhiro , Yool, Andrew

A suite of standard ocean hydrographic and circulation metrics are applied to the equilibrium physical solutions from 13 global carbon models participating in phase 2 of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2). Model-data comparisons are presented for sea surface temperature and salinity, seasonal mixed layer depth, meridional heat and freshwater transport, 3-D hydrographic fields, and meridional overturning. Considerable variation exists among the OCMIP-2 simulations, with some of the solutions falling noticeably outside available observational constraints. For some cases, model-model and model-data differences can be related to variations in surface forcing, subgrid-scale parameterizations, and model architecture. These errors in the physical metrics point to significant problems in the underlying model representations of ocean transport and dynamics, problems that directly affect the OCMIP predicted ocean tracer and carbon cycle variables (e.g., air-sea CO2 flux, chlorofluorocarbon and anthropogenic CO2 uptake, and export production). A substantial fraction of the large model-model ranges in OCMIP-2 biogeochemical fields (±25–40%) represents the propagation of known errors in model physics. Therefore the model-model spread likely overstates the uncertainty in our current understanding of the ocean carbon system, particularly for transport-dominated fields such as the historical uptake of anthropogenic CO2. A full error assessment, however, would need to account for additional sources of uncertainty such as more complex biological-chemical-physical interactions, biases arising from poorly resolved or neglected physical processes, and climate change.

Thumbnail Image
Article

A model of the Arctic Ocean carbon cycle

2011-12-15 , Manizza, Manfredi , Follows, Michael J. , Dutkiewicz, Stephanie , Menemenlis, Dimitris , McClelland, James W. , Hill, C. N. , Peterson, Bruce J. , Key, Robert M.

A three dimensional model of Arctic Ocean circulation and mixing, with a horizontal resolution of 18 km, is overlain by a biogeochemical model resolving the physical, chemical and biological transport and transformations of phosphorus, alkalinity, oxygen and carbon, including the air-sea exchange of dissolved gases and the riverine delivery of dissolved organic carbon. The model qualitatively captures the observed regional and seasonal trends in surface ocean PO4, dissolved inorganic carbon, total alkalinity, and pCO2. Integrated annually, over the basin, the model suggests a net annual uptake of 59 Tg C a−1, within the range of published estimates based on the extrapolation of local observations (20–199 Tg C a−1). This flux is attributable to the cooling (increasing solubility) of waters moving into the basin, mainly from the subpolar North Atlantic. The air-sea flux is regulated seasonally and regionally by sea-ice cover, which modulates both air-sea gas transfer and the photosynthetic production of organic matter, and by the delivery of riverine dissolved organic carbon (RDOC), which drive the regional contrasts in pCO2 between Eurasian and North American coastal waters. Integrated over the basin, the delivery and remineralization of RDOC reduces the net oceanic CO2 uptake by ~10%.

Thumbnail Image
Article

Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean : results from Phase II of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2)

2007-08-08 , Najjar, Raymond G. , Jin, X. , Louanchi, F. , Aumont, Olivier , Caldeira, Ken , Doney, Scott C. , Dutay, J.-C. , Follows, Michael J. , Gruber, Nicolas , Joos, Fortunat , Lindsay, Keith , Maier-Reimer, Ernst , Matear, Richard J. , Matsumoto, K. , Monfray, Patrick , Mouchet, Anne , Orr, James C. , Plattner, Gian-Kasper , Sarmiento, Jorge L. , Schlitzer, Reiner , Slater, Richard D. , Weirig, Marie-France , Yamanaka, Yasuhiro , Yool, Andrew

Results are presented of export production, dissolved organic matter (DOM) and dissolved oxygen simulated by 12 global ocean models participating in the second phase of the Ocean Carbon-cycle Model Intercomparison Project. A common, simple biogeochemical model is utilized in different coarse-resolution ocean circulation models. The model mean (±1σ) downward flux of organic matter across 75 m depth is 17 ± 6 Pg C yr−1. Model means of globally averaged particle export, the fraction of total export in dissolved form, surface semilabile dissolved organic carbon (DOC), and seasonal net outgassing (SNO) of oxygen are in good agreement with observation-based estimates, but particle export and surface DOC are too high in the tropics. There is a high sensitivity of the results to circulation, as evidenced by (1) the correlation of surface DOC and export with circulation metrics, including chlorofluorocarbon inventory and deep-ocean radiocarbon, (2) very large intermodel differences in Southern Ocean export, and (3) greater export production, fraction of export as DOM, and SNO in models with explicit mixed layer physics. However, deep-ocean oxygen, which varies widely among the models, is poorly correlated with other model indices. Cross-model means of several biogeochemical metrics show better agreement with observation-based estimates when restricted to those models that best simulate deep-ocean radiocarbon. Overall, the results emphasize the importance of physical processes in marine biogeochemical modeling and suggest that the development of circulation models can be accelerated by evaluating them with marine biogeochemical metrics.