English David C.

No Thumbnail Available
Last Name
English
First Name
David C.
ORCID
0000-0003-1560-8513

Search Results

Now showing 1 - 1 of 1
  • Article
    Bio‐optical, physical, and chemical properties of a loop current eddy in the Gulf of Mexico
    (American Geophysical Union, 2023-02-25) Zhang, Yingjun ; Hu, Chuanmin ; Barnes, Brian B. ; Liu, Yonggang ; Kourafalou, Vassiliki H. ; McGillicuddy, Dennis J. ; Cannizzaro, Jennifer P. ; English, David C. ; Lembke, Chad
    Multi‐sensor data collected with in situ and satellite instruments during August 2015 were used to understand how the three‐dimensional bio‐optical properties of a Loop Current Eddy (LCE) in the Gulf of Mexico (GoM) contrast those of the background waters, and how these properties are related to physical and chemical properties. With a surface radius of ∼150 km and vertical extension to 1,400–1,500 m, the LCE was found to have highly stratified waters in two layers, with one lying just below the mixed layer (16 m) and the other coinciding with the pycnocline (∼120–200 m within the eddy). Strong contrasts were found in the bio‐optical properties (chlorophyll‐a concentration, absorption of particulate and dissolved matters, particulate backscattering, and beam‐c attenuation) across the eddy core, eddy edge, and surrounding waters. Absorption coefficients (400 nm) of surface particulate and dissolved matters were ∼4 times higher in the surrounding waters than in the eddy core, while surface reflectance (400 nm) in the eddy core was ∼7 times higher than in the surrounding waters. The magnitude of deep chlorophyll maximum (DCM) was comparable (0.3–0.33 mg/m3) in all waters, but the depth of DCM in the eddy core (∼115 m) was much deeper than in the surrounding waters (60–75 m). These contrasts were found to correspond to different water masses with different physical (temperature, density, and buoyancy frequency) and chemical properties (salinity and dissolved oxygen concentration), where physical processes (river plume advection and eddy‐induced downwelling) appeared to drive the changes in bio‐optical properties.