Jacobs
Gregg
Jacobs
Gregg
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticleOver what area did the oil and gas spread during the 2010 Deepwater Horizon oil spill?(The Oceanography Society, 2016-09) Ozgokmen, Tamay ; Chassignet, Eric P. ; Dawson, Clint N. ; Dukhovskoy, Dmitry S. ; Jacobs, Gregg ; Ledwell, James R. ; Garcia-Pineda, Oscar ; MacDonald, Ian R. ; Morey, Steven L. ; Olascoaga, Maria Josefina ; Poje, Andrew ; Reed, Mark ; Skancke, JørgenThe 2010 Deepwater Horizon (DWH) oil spill in the Gulf of Mexico resulted in the collection of a vast amount of situ and remotely sensed data that can be used to determine the spatiotemporal extent of the oil spill and test advances in oil spill models, verifying their utility for future operational use. This article summarizes observations of hydrocarbon dispersion collected at the surface and at depth and our current understanding of the factors that affect the dispersion, as well as our improved ability to model and predict oil and gas transport. As a direct result of studying the area where oil and gas spread during the DWH oil spill, our forecasting capabilities have been greatly enhanced. State-of-the-art oil spill models now include the ability to simulate the rise of a buoyant plume of oil from sources at the seabed to the surface. A number of efforts have focused on improving our understanding of the influences of the near-surface oceanic layer and the atmospheric boundary layer on oil spill dispersion, including the effects of waves. In the future, oil spill modeling routines will likely be included in Earth system modeling environments, which will link physical models (hydrodynamic, surface wave, and atmospheric) with marine sediment and biogeochemical components.
-
ArticleSEASTAR: A mission to study ocean submesoscale dynamics and small-scale atmosphere-ocean processes in coastal, shelf and polar seas(Frontiers Media, 2019-08-13) Gommenginger, Christine ; Chapron, Bertrand ; Hogg, Andy ; Buckingham, Christian ; Fox-Kemper, Baylor ; Eriksson, Leif ; Soulat, Francois ; Ubelmann, Clement ; Ocampo-Torres, Francisco ; Nardelli, Bruno Buongiorno ; Griffin, David ; Lopez-Dekker, Paco ; Knudsen, Per ; Andersen, Ole ; Stenseng, Lars ; Stapleton, Neil ; Perrie, Will ; Violante-Carvalho, Nelson ; Schulz-Stellenfleth, Johannes ; Woolf, David K. ; Isern-Fontanet, Jordi ; Ardhuin, Fabrice ; Klein, Patrice ; Mouche, Alexis ; Pascual, Ananda ; Capet, Xavier ; Hauser, Daniele ; Stoffelen, Ad ; Morrow, Rosemary ; Aouf, Lotfi ; Breivik, Øyvind ; Fu, Lee-Lueng ; Johannessen, Johnny A. ; Aksenov, Yevgeny ; Bricheno, Lucy ; Hirschi, Joel ; Martin, Adrien C. H. ; Martin, Adrian P. ; Nurser, A. J. George ; Polton, Jeff ; Wolf, Judith ; Johnsen, Harald ; Soloviev, Alexander ; Jacobs, Gregg A. ; Collard, Fabrice ; Groom, Steve ; Kudryavtsev, Vladimir ; Wilkin, John L. ; Navarro, Victor ; Babanin, Alexander ; Martin, Matthew ; Siddorn, John ; Saulter, Andrew ; Rippeth, Tom P. ; Emery, Bill ; Maximenko, Nikolai ; Romeiser, Roland ; Graber, Hans C. ; Alvera Azcarate, Aida ; Hughes, Chris W. ; Vandemark, Douglas ; da Silva, Jose ; Van Leeuwen, Peter Jan ; Naveira Garabato, Alberto C. ; Gemmrich, Johannes ; Mahadevan, Amala ; Marquez, Jose ; Munro, Yvonne ; Doody, Sam ; Burbidge, GeoffHigh-resolution satellite images of ocean color and sea surface temperature reveal an abundance of ocean fronts, vortices and filaments at scales below 10 km but measurements of ocean surface dynamics at these scales are rare. There is increasing recognition of the role played by small scale ocean processes in ocean-atmosphere coupling, upper-ocean mixing and ocean vertical transports, with advanced numerical models and in situ observations highlighting fundamental changes in dynamics when scales reach 1 km. Numerous scientific publications highlight the global impact of small oceanic scales on marine ecosystems, operational forecasts and long-term climate projections through strong ageostrophic circulations, large vertical ocean velocities and mixed layer re-stratification. Small-scale processes particularly dominate in coastal, shelf and polar seas where they mediate important exchanges between land, ocean, atmosphere and the cryosphere, e.g., freshwater, pollutants. As numerical models continue to evolve toward finer spatial resolution and increasingly complex coupled atmosphere-wave-ice-ocean systems, modern observing capability lags behind, unable to deliver the high-resolution synoptic measurements of total currents, wind vectors and waves needed to advance understanding, develop better parameterizations and improve model validations, forecasts and projections. SEASTAR is a satellite mission concept that proposes to directly address this critical observational gap with synoptic two-dimensional imaging of total ocean surface current vectors and wind vectors at 1 km resolution and coincident directional wave spectra. Based on major recent advances in squinted along-track Synthetic Aperture Radar interferometry, SEASTAR is an innovative, mature concept with unique demonstrated capabilities, seeking to proceed toward spaceborne implementation within Europe and beyond.