van Beek Pieter

No Thumbnail Available
Last Name
van Beek
First Name
Pieter
ORCID

Search Results

Now showing 1 - 7 of 7
  • Article
    The Ra-226–Ba relationship in the North Atlantic during GEOTRACES-GA01
    (Copernicus Publications on behalf of the European Geosciences Union, 2018-05-17) Le Roy, Emilie ; Sanial, Virginie ; Charette, Matthew A. ; van Beek, Pieter ; Lacan, Francois ; Jacquet, Stéphanie H. M. ; Henderson, Paul B. ; Souhaut, Marc ; García-Ibáñez, Maribel I. ; Jeandel, Catherine ; Perez, Fiz F. ; Sarthou, Geraldine
    We report detailed sections of radium-226 (226Ra, T1∕2 =  1602 years) activities and barium (Ba) concentrations determined in the North Atlantic (Portugal–Greenland–Canada) in the framework of the international GEOTRACES program (GA01 section – GEOVIDE project, May–July 2014). Dissolved 226Ra and Ba are strongly correlated along the section, a pattern that may reflect their similar chemical behavior. Because 226Ra and Ba have been widely used as tracers of water masses and ocean mixing, we investigated their behavior more thoroughly in this crucial region for thermohaline circulation, taking advantage of the contrasting biogeochemical patterns existing along the GA01 section. We used an optimum multiparameter (OMP) analysis to distinguish the relative importance of physical transport (water mass mixing) from nonconservative processes (sedimentary, river or hydrothermal inputs, uptake by particles and dissolved–particulate dynamics) on the 226Ra and Ba distributions in the North Atlantic. Results show that the measured 226Ra and Ba concentrations can be explained by conservative mixing for 58 and 65 % of the samples, respectively, notably at intermediate depth, away from the ocean interfaces. 226Ra and Ba can thus be considered conservative tracers of water mass transport in the ocean interior on the space scales considered here, namely, on the order of a few thousand kilometers. However, regions in which 226Ra and Ba displayed nonconservative behavior and in some cases decoupled behaviors were also identified, mostly at the ocean boundaries (seafloor, continental margins and surface waters). Elevated 226Ra and Ba concentrations found in deepwater in the West European Basin suggest that lower Northeast Atlantic Deep Water (NEADWl) accumulates 226Ra and Ba from sediment diffusion and/or particle dissolution during transport. In the upper 1500 m of the West European Basin, deficiencies in 226Ra and Ba are likely explained by their incorporation in planktonic calcareous and siliceous shells, or in barite (BaSO4) by substitution or adsorption mechanisms. Finally, because Ba and 226Ra display different source terms (mostly deep-sea sediments for 226Ra and rivers for Ba), strong decoupling between 226Ra and Ba were observed at the land–ocean boundaries. This is especially true in the shallow stations near the coasts of Greenland and Newfoundland where high 226Ra ∕ Ba ratios at depth reflect the diffusion of 226Ra from sediment and low 226Ra ∕ Ba ratios in the upper water column reflect the input of Ba associated with meteoric waters.
  • Article
    Radium isotopes as submarine groundwater discharge (SGD) tracers: review and recommendations
    (Elsevier, 2021-05-14) Garcia-Orellana, Jordi ; Rodellas, Valenti ; Tamborski, Joseph ; Diego-Feliu, Marc ; van Beek, Pieter ; Weinstein, Yishai ; Charette, Matthew A. ; Alorda-Kleinglass, Aaron ; Michael, Holly A. ; Stieglitz, Thomas ; Scholten, Jan C.
    Submarine groundwater discharge (SGD) is now recognized as an important process of the hydrological cycle worldwide and plays a major role as a conveyor of dissolved compounds to the ocean. Naturally occurring radium isotopes (223Ra, 224Ra, 226Ra and 228Ra) are widely employed geochemical tracers in marine environments. Whilst Ra isotopes were initially predominantly applied to study open ocean processes and fluxes across the continental margins, their most common application in the marine environment has undoubtedly become the identification and quantification of SGD. This review focuses on the application of Ra isotopes as tracers of SGD and associated inputs of water and solutes to the coastal ocean. In addition, we review i) the processes controlling Ra enrichment and depletion in coastal groundwater and seawater; ii) the systematics applied to estimate SGD using Ra isotopes and iii) we summarize additional applications of Ra isotopes in groundwater and marine studies. We also provide some considerations that will help refine SGD estimates and identify the critical knowledge gaps and research needs related to the current use of Ra isotopes as SGD tracers.
  • Article
    Conceptual uncertainties in groundwater and porewater fluxes estimated by radon and radium mass balances
    (Association for the Sciences of Limnology and Oceanography, 2021-01-08) Rodellas, Valenti ; Stieglitz, Thomas ; Tamborski, Joseph ; van Beek, Pieter ; Andrisoa, Aladin ; Cook, Peter G.
    Radium isotopes and radon are routinely used as tracers to quantify groundwater and porewater fluxes into coastal and freshwater systems. However, uncertainties associated with the determination of the tracer flux are often poorly addressed and often neglect all the potential errors associated with the conceptualization of the system (i.e., conceptual uncertainties). In this study, we assess the magnitude of some of the key uncertainties related to the determination of the radium and radon inputs supplied by groundwater and porewater fluxes into a waterbody (La Palme Lagoon, France). This uncertainty assessment is addressed through a single model ensemble approach, where a tracer mass balance is run multiple times with variable sets of assumptions and approaches for the key parameters determined through a sensitivity test. In particular, conceptual uncertainties linked to tracer concentration, diffusive fluxes, radon evasion to the atmosphere, and change of tracer inventory over time were considered. The magnitude of porewater fluxes is further constrained using a comparison of independent methods: (1) 224Ra and (2) 222Rn mass balances in overlying waters, (3) a model of 222Rn deficit in sediments, and (4) a fluid‐salt numerical transport model. We demonstrate that conceptual uncertainties are commonly a major source of uncertainty on the estimation of groundwater or porewater fluxes and they need to be taken into account when using tracer mass balances. In the absence of a general framework for assessing these uncertainties, this study provides a practical approach to evaluate key uncertainties associated to radon and radium mass balances.
  • Article
    Fractionation of 226Ra and Ba in the upper North Pacific Ocean
    (Frontiers Media, 2022-07-15) van Beek, Pieter ; Francois, Roger ; Honda, Makio C. ; Charette, Matthew A. ; Reyss, Jean-Louis ; Ganeshram, Raja S. ; Monnin, Christophe ; Honjo, Susumu
    Investigations conducted during the GEOSECS program concluded that radium-226 (T1/2 = 1602 y) and barium are tightly correlated in waters above 2500 m in the Atlantic, Pacific and Antarctic Oceans, with a fairly uniform 226Ra/Ba ratio of 2.3 ± 0.2 dpm µmol-1 (4.6 nmol 226Ra/mol Ba). Here, we report new 226Ra and Ba data obtained at three different stations in the Pacific Ocean: stations K1 and K3 in the North-West Pacific and station old Hale Aloha, off Hawaii Island. The relationship between 226Ra and Ba found at these stations is broadly consistent with that reported during the GEOSECS program. At the three investigated stations, however, we find that the 226Ra/Ba ratios are significantly lower in the upper 500 m of the water column than at greater depths, a pattern that was overlooked during the GEOSECS program, either because of the precision of the measurements or because of the relatively low sampling resolution in the upper 500 m. Although not always apparent in individual GEOSECS profiles, this trend was noted before from the non-zero intercept of the linear regression when plotting the global data set of Ba versus 226Ra seawater concentration and was attributed, at least in part, to the predominance of surface input from rivers for Ba versus bottom input from sediments for 226Ra. Similarly, low 226Ra/Ba ratios in the upper 500 m have been reported in other oceanic basins (e.g. Atlantic Ocean). Parallel to the low 226Ra/Ba ratios in seawater, higher 226Ra/Ba ratios were found in suspended particles collected in the upper 500 m. This suggests that fractionation between the two elements may contribute to the lower 226Ra/Ba ratios found in the upper 500 m, with 226Ra being preferentially removed from surface water, possibly as a result of mass fractionation during celestite formation by acantharians and/or barite precipitation, since both chemical elements have similar ionic radius and the same configuration of valence electrons. This finding has implications for dating of marine carbonates by 226Ra, which requires a constant initial 226Ra/Ba ratio incorporated in the shells and for using 226Ra as an abyssal circulation and mixing tracer.
  • Article
    Guidelines and limits for the quantification of ra isotopes and related radionuclides with the radium delayed coincidence counter (RaDeCC)
    (American Geophysical Union, 2020-03-27) Diego-Feliu, Marc ; Rodellas, Valenti ; Alorda-Kleinglass, Aaron ; Tamborski, Joseph ; van Beek, Pieter ; Heins, L. ; Bruach, Joan Manuel ; Arnold, Ralph ; Garcia-Orellana, Jordi
    The Radium Delayed Coincidence Counter (RaDeCC) is one of the most extensively used equipment for measuring 223Ra and 224Ra activities in water and sediment samples. Samples are placed in a closed He‐circulation system that carries the Rn produced by the decay of Ra to a scintillation cell. Each alpha decay recorded in the cell is routed to an electronic delayed coincidence system which enables the discrimination of 223Ra and 224Ra. In this study, the measurement and quantification methods using the RaDeCC system are assessed through analyses of registered data in different RaDeCC systems worldwide and a set of simulations. Results of this work indicate that the equations used to correct for 223Ra and 224Ra cross‐talk interferences are only valid for a given range of activities and ratios between isotopes. Above certain limits that are specified in this study, these corrections may significantly overestimate the quantification of 223Ra and 224Ra activities (up to ~40% and 30%, respectively), as well as the quantification of their parents 227Ac and 228Th. High activities of 226Ra may also produce an overestimation of 224Ra activities due to the buildup of 222Rn, especially when long measurements with low activities of 224Ra are performed. An improved method to quantify 226Ra activities from the buildup of 222Rn with the RaDeCC system is also developed in this study. Wethus provide a new set of guidelines for the appropriate quantification of 223Ra, 224Ra, 227Ac, 228Th, and 226Ra with the RaDeCC system.
  • Article
    Nutrient fluxes associated with submarine groundwater discharge from karstic coastal aquifers (Côte Bleue, French Mediterranean coastline)
    (Frontiers Media, 2020-02-18) Bejannin, Simon ; Tamborski, Joseph ; van Beek, Pieter ; Souhaut, Marc ; Stieglitz, Thomas ; Radakovitch, Olivier ; Claude, Christelle ; Conan, Pascal ; Pujo-Pay, Mireille ; Crispi, Olivier ; Le Roy, Emilie ; Estournel, Claude
    Determination of submarine groundwater discharge (SGD) from karstic coastal aquifers is important to constrain hydrological and biogeochemical cycles. However, SGD quantification using commonly employed geochemical methods can be difficult to constrain under the presence of large riverine inputs, and is further complicated by the determination of the karstic groundwater endmember. Here, we investigated a coastal region where groundwater discharges from a karstic aquifer system using airborne thermal infrared mapping and geochemical sampling conducted along offshore transects. We report radium data (223Ra, 224Ra, 228Ra) that we used to derive fluxes (water, nutrients) associated with terrestrial groundwater discharge and/or seawater circulation through the nearshore permeable sediments and coastal aquifer. Field work was conducted at different periods of the year to study the temporal variability of the chemical fluxes. Offshore transects of 223Ra and 224Ra were used to derive horizontal eddy diffusivity coefficients that were subsequently combined with surface water nutrient gradients (NO2− + NO3−, DSi) to determine the net nutrient fluxes from SGD. The estimated DSi and (NO2− + NO3−) fluxes are 6.2 ± 5.0 *103 and 4.0 ± 2.0 *103 mol d−1 per km of coastline, respectively. We attempted to further constrain these SGD fluxes by combining horizontal eddy diffusivity and 228Ra gradients. However, SGD endmember selection in this area (terrestrial groundwater discharge vs. porewater) adds further uncertainty to the flux calculation and thus prevented us from calculating a reliable flux using this latter method. Additionally, the relatively long half-life of 228Ra (5.75 y) makes it sensitive to specific circulation patterns in this coastal region, including sporadic intrusions of Rhône river waters that impact both the 228Ra and nutrient surface water distributions. We show that SGD nutrient fluxes locally reach up to 20 times the nutrient fluxes from a small river (Huveaune River). On a regional scale, DSi fluxes driven by SGD vary between 0.1 and 1.4% of the DSi inputs of the Rhône River, while the (NO2− + NO3−) fluxes driven by SGD on this 22 km long coastline are between 0.1 and 0.3% of the Rhône River inputs, the largest river that discharges into the Mediterranean Sea. Interestingly, the nutrient fluxes reported here are similar in magnitude compared with the fluxes quantified along the sandy beach of La Franqui, in the western Gulf of Lions (Tamborski et al., 2018), despite the different lithology of the two areas (karst systems vs. unconsolidated sediment).
  • Article
    The GEOTRACES Intermediate Data Product 2017
    (Elsevier, 2018-06-01) Schlitzer, Reiner ; Anderson, Robert F. ; Dodas, Elena Masferrer ; Lohan, Maeve C. ; Geibert, Walter ; Tagliabue, Alessandro ; Bowie, Andrew R. ; Jeandel, Catherine ; Maldonado, Maria T. ; Landing, William M. ; Cockwell, Donna ; Abadie, Cyril ; Abouchami, Wafa ; Achterberg, Eric P. ; Agather, Alison ; Aguliar-Islas, Ana ; van Aken, Hendrik M. ; Andersen, Morten ; Archer, Corey ; Auro, Maureen E. ; Baar, Hein J. W. de ; Baars, Oliver ; Baker, Alex R. ; Bakker, Karel ; Basak, Chandranath ; Baskaran, Mark ; Bates, Nicholas R. ; Bauch, Dorothea ; van Beek, Pieter ; Behrens, Melanie K. ; Black, Erin E. ; Bluhm, Katrin ; Bopp, Laurent ; Bouman, Heather ; Bowman, Katlin ; Bown, Johann ; Boyd, Philip ; Boye, Marie ; Boyle, Edward A. ; Branellec, Pierre ; Bridgestock, Luke ; Brissebrat, Guillaume ; Browning, Thomas A. ; Bruland, Kenneth W. ; Brumsack, Hans-Jürgen ; Brzezinski, Mark A. ; Buck, Clifton S. ; Buck, Kristen N. ; Buesseler, Ken O. ; Bull, Abby ; Butler, Edward ; Cai, Pinghe ; Cámara Mor, Patricia ; Cardinal, Damien ; Carlson, Craig ; Carrasco, Gonzalo ; Casacuberta, Nuria ; Casciotti, Karen L. ; Castrillejo, Maxi ; Chamizo, Elena ; Chance, Rosie ; Charette, Matthew A. ; Chaves, Joaquin E. ; Cheng, Hai ; Chever, Fanny ; Christl, Marcus ; Church, Thomas M. ; Closset, Ivia ; Colman, Albert S. ; Conway, Tim M. ; Cossa, Daniel ; Croot, Peter L. ; Cullen, Jay T. ; Cutter, Gregory A. ; Daniels, Chris ; Dehairs, Frank ; Deng, Feifei ; Dieu, Huong Thi ; Duggan, Brian ; Dulaquais, Gabriel ; Dumousseaud, Cynthia ; Echegoyen-Sanz, Yolanda ; Edwards, R. Lawrence ; Ellwood, Michael J. ; Fahrbach, Eberhard ; Fitzsimmons, Jessica N. ; Flegal, A. Russell ; Fleisher, Martin Q. ; van de Flierdt, Tina ; Frank, Martin ; Friedrich, Jana ; Fripiat, Francois ; Fröllje, Henning ; Galer, Stephen J. G. ; Gamo, Toshitaka ; Ganeshram, Raja S. ; Garcia-Orellana, Jordi ; Garcia Solsona, Ester ; Gault-Ringold, Melanie ; George, Ejin ; Gerringa, Loes J. A. ; Gilbert, Melissa ; Godoy, Jose Marcus ; Goldstein, Steven L. ; Gonzalez, Santiago ; Grissom, Karen ; Hammerschmidt, Chad R. ; Hartman, Alison ; Hassler, Christel ; Hathorne, Ed C. ; Hatta, Mariko ; Hawco, Nicholas J. ; Hayes, Christopher T. ; Heimbürger, Lars-Eric ; Helgoe, Josh ; Heller, Maija Iris ; Henderson, Gideon M. ; Henderson, Paul B. ; van Heuven, Steven ; Ho, Peng ; Horner, Tristan J. ; Hsieh, Yu-Te ; Huang, Kuo-Fang ; Humphreys, Matthew P. ; Isshiki, Kenji ; Jacquot, Jeremy E. ; Janssen, David J. ; Jenkins, William J. ; John, Seth ; Jones, Elizabeth M. ; Jones, Janice L. ; Kadko, David ; Kayser, Rick ; Kenna, Timothy C. ; Khondoker, Roulin ; Kim, Taejin ; Kipp, Lauren ; Klar, Jessica K. ; Klunder, Maarten ; Kretschmer, Sven ; Kumamoto, Yuichiro ; Laan, Patrick ; Labatut, Marie ; Lacan, Francois ; Lam, Phoebe J. ; Lambelet, Myriam ; Lamborg, Carl H. ; le Moigne, Frederique ; Le Roy, Emilie ; Lechtenfeld, Oliver J. ; Lee, Jong-Mi ; Lherminier, Pascale ; Little, Susan ; López-Lora, Mercedes ; Lu, Yanbin ; Masque, Pere ; Mawji, Edward ; McClain, Charles R. ; Measures, Christopher I. ; Mehic, Sanjin ; Menzel Barraqueta, Jan-Lukas ; Merwe, Pier van der ; Middag, Rob ; Mieruch, Sebastian ; Milne, Angela ; Minami, Tomoharu ; Moffett, James W. ; Moncoiffe, Gwenaelle ; Moore, Willard S. ; Morris, Paul J. ; Morton, Peter L. ; Nakaguchi, Yuzuru ; Nakayama, Noriko ; Niedermiller, John ; Nishioka, Jun ; Nishiuchi, Akira ; Noble, Abigail E. ; Obata, Hajime ; Ober, Sven ; Ohnemus, Daniel C. ; van Ooijen, Jan ; O'Sullivan, Jeanette ; Owens, Stephanie A. ; Pahnke, Katharina ; Paul, Maxence ; Pavia, Frank ; Pena, Leopoldo D. ; Peters, Brian ; Planchon, Frederic ; Planquette, Helene ; Pradoux, Catherine ; Puigcorbé, Viena ; Quay, Paul D. ; Queroue, Fabien ; Radic, Amandine ; Rauschenberg, Sara ; Rehkämper, Mark ; Rember, Robert ; Remenyi, Tomas A. ; Resing, Joseph A. ; Rickli, Joerg ; Rigaud, Sylvain ; Rijkenberg, Micha J. A. ; Rintoul, Stephen R. ; Robinson, Laura F. ; Roca-Martí, Montserrat ; Rodellas, Valenti ; Roeske, Tobias ; Rolison, John M. ; Rosenberg, Mark ; Roshan, Saeed ; Rutgers van der Loeff, Michiel M. ; Ryabenko, Evgenia ; Saito, Mak A. ; Salt, Lesley ; Sanial, Virginie ; Sarthou, Geraldine ; Schallenberg, Christina ; Schauer, Ursula ; Scher, Howie ; Schlosser, Christian ; Schnetger, Bernhard ; Scott, Peter M. ; Sedwick, Peter N. ; Semiletov, Igor P. ; Shelley, Rachel U. ; Sherrell, Robert M. ; Shiller, Alan M. ; Sigman, Daniel M. ; Singh, Sunil Kumar ; Slagter, Hans ; Slater, Emma ; Smethie, William M. ; Snaith, Helen ; Sohrin, Yoshiki ; Sohst, Bettina M. ; Sonke, Jeroen E. ; Speich, Sabrina ; Steinfeldt, Reiner ; Stewart, Gillian ; Stichel, Torben ; Stirling, Claudine H. ; Stutsman, Johnny ; Swarr, Gretchen J. ; Swift, James H. ; Thomas, Alexander ; Thorne, Kay ; Till, Claire P. ; Till, Ralph ; Townsend, Ashley T. ; Townsend, Emily ; Tuerena, Robyn ; Twining, Benjamin S. ; Vance, Derek ; Velazquez, Sue ; Venchiarutti, Celia ; Villa-Alfageme, Maria ; Vivancos, Sebastian M. ; Voelker, Antje H. L. ; Wake, Bronwyn ; Warner, Mark J. ; Watson, Ros ; van Weerlee, Evaline ; Weigand, M. Alexandra ; Weinstein, Yishai ; Weiss, Dominik ; Wisotzki, Andreas ; Woodward, E. Malcolm S. ; Wu, Jingfeng ; Wu, Yingzhe ; Wuttig, Kathrin ; Wyatt, Neil ; Xiang, Yang ; Xie, Ruifang C. ; Xue, Zichen ; Yoshikawa, Hisayuki ; Zhang, Jing ; Zhang, Pu ; Zhao, Ye ; Zheng, Linjie ; Zheng, Xin-Yuan ; Zieringer, Moritz ; Zimmer, Louise A. ; Ziveri, Patrizia ; Zunino, Patricia ; Zurbrick, Cheryl
    The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 25 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017. This article is part of a special issue entitled: Conway GEOTRACES - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. González.