Wang
Wanqiu
Wang
Wanqiu
No Thumbnail Available
Search Results
Now showing
1 - 1 of 1
-
ArticleClimate Process Team: improvement of ocean component of NOAA Climate Forecast System relevant to Madden-Julian Oscillation simulations(American Geophysical Union, 2021-10-04) Shinoda, Toshiaki ; Pei, Suyang ; Wang, Wanqiu ; Fu, Joshua X. ; Lien, Ren-Chieh ; Seo, Hyodae ; Soloviev, AlexanderGiven the increasing attention in forecasting weather and climate on the subseasonal time scale in recent years, National Oceanic and Atmospheric Administration (NOAA) announced to support Climate Process Teams (CPTs) which aim to improve the Madden-Julian Oscillation (MJO) prediction by NOAA’s global forecasting models. Our team supported by this CPT program focuses primarily on the improvement of upper ocean mixing parameterization and air-sea fluxes in the NOAA Climate Forecast System (CFS). Major improvement includes the increase of the vertical resolution in the upper ocean and the implementation of General Ocean Turbulence Model (GOTM) in CFS. In addition to existing mixing schemes in GOTM, a newly developed scheme based on observations in the tropical ocean, with further modifications, has been included. A better performance of ocean component is demonstrated through one-dimensional ocean model and ocean general circulation model simulations validated by the comparison with in-situ observations. These include a large sea surface temperature (SST) diurnal cycle during the MJO suppressed phase, intraseasonal SST variations associated with the MJO, ocean response to atmospheric cold pools, and deep cycle turbulence. Impact of the high-vertical resolution of ocean component on CFS simulation of MJO-associated ocean temperature variations is evident. Also, the magnitude of SST changes caused by high-resolution ocean component is sufficient to influence the skill of MJO prediction by CFS.