Spiess Fred N.

No Thumbnail Available
Last Name
Spiess
First Name
Fred N.
ORCID

Search Results

Now showing 1 - 5 of 5
  • Working Paper
    Broadband borehole seismic system integration tests : report of the system integration tests at MPL/SIO
    (Woods Hole Oceanographic Institution, 1998) Goldsborough, Robert G. ; Austin, Gary ; Bolmer, S. Thompson ; Jabson, David M. ; Jonke, Patrick ; Gould, Matthew R. ; Hildebrand, John A. ; Hollinshead, C. B. ; Offield, Glen ; Orcutt, John ; Peal, Kenneth R. ; Spiess, Fred N. ; Stephen, Ralph A. ; Vernon, Frank L. ; Willoughby, David F. ; Zimmerman, Richard
    This report describes a series of tests performed at SIO/MPL, Point Lorna the week of 17 November 1997 designed to achieve integration of the Broadband Borehole Seismic System (BBBSS) in preparation for the OSN Pilot Experiment cruise on RN Thompson during January 1997. Representatives from all groups were present (see appendix A), with their respective parts of the system and support equipment. It was anticipated that these tests would result in the complete integration of the various components of the borehole seismometer system in preparation for the January cruise. The system would be assembled and tested following a plan (see appendix C) that would culminate in the fully integrated borehole seismometer being wet tested off the MPL pier.
  • Working Paper
    SeisCORK meeting report
    (Woods Hole Oceanographic Institution, 2006-02) Stephen, Ralph A. ; Pettigrew, Tom ; Becker, Keir ; Spiess, Fred N.
    The purpose of this meeting was to explore design options to simultaneously acquire borehole seismic data and hydro-geological data (pressure, temperature, fluid sampling and microbiological sampling) on a single CORK system. The scientific focus was to add a seismic component to the Juan de Fuca Hydrogeology program. By permanently installing a sensor string in the borehole our goal was to enable: l) time-lapse VSP's and offset VSP's with sufficient data quality to study amplitude versus offset, shear wave anisotropy, and lateral heterogeneity; 2) monitoring of micro- and nano- earthquake activity around the site for correlation with pressure transients. Because of the difficulty in ensuring adequate coupling through multiple casing strings we concluded that it was impractical to install the vertical seismic array with 10m spacing (50-60 nodes) that would be necessary for VSP's and time-lapse VSP's. We did describe a scenario for a vertical seismic array with approximately 100m spacing (5-6 nodes) that could be used for offset-VSP's and seismic monitoring. This uses some unique technology and involves two seismic strings: one in the annulus between the 4- 1/2" and 10-3/4" casings and one in the middle of the 4-1/2" casing.
  • Technical Report
    Report of a workshop on technical approaches to construction of a seafloor geomagnetic observatory
    (Woods Hole Oceanographic Institution, 1995-09) Chave, Alan D. ; Green, Arthur W. ; Filloux, Jean H. ; Law, Lawrie K. ; Petitt, Robert A. ; Rasson, Jean L. ; Schultz, Adam ; Spiess, Fred N. ; Tarits, Pascal ; Tivey, Maurice A. ; Webb, Spahr C.
    This report considers the technical issues on sensors, data recording and transmission, control and timing, power, and packaging associated with constricting a seafloor geomagnetic observatory. Existing technologies either already in use for oceanographic purposes or adapted from terrestral geomagnetic observatories could be applied to measure the vector magnetic field components and absolute intensity with minimal development. The major technical challenge arises in measuring absolute direction on the seafloor because terrestral techniques are not transferrable to the deep ocean. Two solutions to this problem were identified. The first requires the development of an instrument which measures the instantaneous declination and inclination of the magnetic field relative to a north-seeking gyroscope and the local vertical. The second is a straightforward extension of a precision acoustic method for determining absolute position on the seafloor.
  • Article
    Ocean Seismic Network Pilot Experiment
    ( 2003-10-31) Stephen, Ralph A. ; Spiess, Fred N. ; Collins, John A. ; Hildebrand, John A. ; Orcutt, John A. ; Peal, Kenneth R. ; Vernon, Frank L. ; Wooding, Frank B.
    The primary goal of the Ocean Seismic Network Pilot Experiment (OSNPE) was to learn how to make high quality broadband seismic measurements on the ocean bottom in preparation for a permanent ocean seismic network. The experiment also had implications for the development of a capability for temporary (e.g., 1 year duration) seismic experiments on the ocean floor. Equipment for installing, operating and monitoring borehole observatories in the deep sea was also tested including a lead-in package, a logging probe, a wire line packer and a control vehicle. The control vehicle was used in three modes during the experiment: for observation of seafloor features and equipment, for equipment launch and recovery, and for power supply and telemetry between ocean bottom units and the ship. The OSNPE which was completed in June 1998 acquired almost four months of continuous data and it demonstrated clearly that a combination of shallow buried and borehole broadband sensors could provide comparable quality data to broadband seismic installations on islands and continents. Burial in soft mud appears to be adequate at frequencies below the microseism peak. Although the borehole sensor was subject to installation noise at low frequencies (0.6 to 50 mHz), analysis of the OSNPE data provides new insights into our understanding of ocean bottom ambient noise. The OSNPE results clearly demonstrate the importance of sediment borne shear modes in ocean bottom ambient noise behavior. Ambient noise drops significantly at high frequencies for a sensor placed just at the sediment basalt interface. At frequencies above the microseism peak, there are two reasons that ocean bottom stations have been generally regarded as noisier than island or land stations: ocean bottom stations are closer to the noise source (the surface gravity waves) and most ocean bottom stations to date have been installed on low rigidity sediments where they are subject to the effects of shear wave resonances. When sensors are placed in boreholes in basement the performance of ocean bottom seismic stations approaches that of continental and island stations. A broadband borehole seismic station should be included in any real-time ocean bottom observatory.
  • Working Paper
    Progress report on the development of the seafloor borehole array seismic system (phase II) : July 14, 1992 to January 31, 1996
    (Woods Hole Oceanographic Institution, 1996-06) Stephen, Ralph A. ; Peal, Kenneth R. ; Bolmer, S. Thompson ; Gould, Matthew R. ; Koelsch, Donald E. ; Orcutt, John A. ; Vernon, Frank L. ; Offield, G. ; Willoughby, David F. ; Hollinshead, C. B. ; Spiess, Fred N. ; Hildebrand, John A. ; Zimmerman, Richard ; Austin, Gary
    The Seafloor Borehole Array Seismic System (SEABASS) was originally developed to record autonomously on the seafloor the signals received on a four-sonde three-component borehole geophone array in the VLF band (2-50Hz)(Stephen eta!., 1994). The system is designed to use the wireline re-entry capability (Spiess, 1993; Spiess eta!., 1992) to install and retrieve the seafloor instrumentation (Figures 1 and 2). Following the successful demonstration of this technology on the LFASE (Low Frequency Acoustic-Seismic Experiment) project in September 1989, it was decided to extend the capability to broadband (1000sec-5Hz) borehole seismometers which could be used for permanent seafloor seismic observatories in the Ocean Seismic Network (Orcutt and Stephen, 1993; Purdy and Dziewonski, 1988; Purdy and Orcutt, 1995; Stephen, 1995; Sutton and Barstow, 1990; Sutton eta!., 1988; Sutton eta!., 1965). The Broadband Borehole Seismic System (B3S2) is the prototype system for permanent broadband borehole seismic observatories on the seafloor. It has three major components: i) a broadband borehole seismometer, the Teledyne 54000, modified for seafloor operations by Scripps-IGPP; ii) the re-entry system provided by Scripps-MPL; and iii) the seafloor recording system developed by WHO I. Because of the similarity of the seafloor recording system to SEABASS we have named this new system SEABASS-ll. This report discusses the development of SEABASS-Il at WHOI in the period from July 14, 1992 to January 31, 1996. The motivation for the project and a work statement are contained in WHOI proposals 7016 and 7016.1. This report is a collection of documentation prepared while the work was being carried out. Some of the issues discussed in early memos were subsequently changed. Modifications and further testing of SEABASS-ll, as well as final system integration tests with the borehole andreentry systems (both of which are also still being modified and tested) have still to be carried out in preparation for the OSN Pilot Experiment Cruise in Spring 1997. This is a preliminary report only and presents work in progress. It will be useful to the engineering team as a historical reference of the sequence of events in the development of SEABASS-ll but it should not be considered as a technical manual for the instrumentation.