Ummenhofer Caroline C.

No Thumbnail Available
Last Name
Ummenhofer
First Name
Caroline C.
ORCID
0000-0002-9163-3967

Search Results

Now showing 1 - 20 of 31
  • Preprint
    Early assessment of seasonal forage availability for mitigating the impact of drought on East African pastoralists
    ( 2015-11) Vrieling, Anton ; Meroni, Michele ; Mude, Andrew G. ; Chantarat, Sommarat ; Ummenhofer, Caroline C. ; de Bie, Kees (C.A.J.M.)
    Pastoralist households across East Africa face major livestock losses during drought periods that can cause persistent poverty. For Kenya and southern Ethiopia, an existing index insurance scheme aims to reduce the adverse effects of such losses. The scheme insures individual households through an area-aggregated seasonal forage scarcity index derived from remotely-sensed normalized difference vegetation index (NDVI) time series. Until recently, insurance contracts covered animal losses and indemnity payouts were consequently made late in the season, based on a forage scarcity index incorporating both wet and dry season NDVI data. Season timing and duration were fixed for the whole area (March-September for long rains, October-February for short rains). Due to demand for asset protection insurance (pre-loss intervention) our aim was to identify earlier payout options by shortening the temporal integration period of the index. We used 250m-resolution 10-day NDVI composites for 2001-2014 from the Moderate Resolution Imaging Spectroradiometer (MODIS). To better describe the period during which forage develops, we first retrieved per-pixel average season start- and end-dates using a phenological model. These dates were averaged per insurance unit to obtain unit-specific growing period definitions. With these definitions a new forage scarcity index was calculated. We then examined if shortening the temporal period further could effectively predict most (>90%) of the interannual variability of the new index, and assessed the effects of shortening the period on indemnity payouts. Our analysis shows that insurance payouts could be made one to three months earlier as compared to the current index definition, depending on the insurance unit. This would allow pastoralists to use indemnity payments to protect their livestock through purchase of forage, water, or medicines.
  • Article
    North Atlantic salinity as a predictor of Sahel rainfall
    (American Association for the Advancement of Science., 2016-05-06) Li, Laifang ; Schmitt, Raymond W. ; Ummenhofer, Caroline C. ; Karnauskas, Kristopher B.
    Water evaporating from the ocean sustains precipitation on land. This ocean-to-land moisture transport leaves an imprint on sea surface salinity (SSS). Thus, the question arises of whether variations in SSS can provide insight into terrestrial precipitation. This study provides evidence that springtime SSS in the subtropical North Atlantic ocean can be used as a predictor of terrestrial precipitation during the subsequent summer monsoon in Africa. Specifically, increased springtime SSS in the central to eastern subtropical North Atlantic tends to be followed by above-normal monsoon-season precipitation in the African Sahel. In the spring, high SSS is associated with enhanced moisture flux divergence from the subtropical oceans, which converges over the African Sahel and helps to elevate local soil moisture content. From spring to the summer monsoon season, the initial water cycling signal is preserved, amplified, and manifested in excessive precipitation. According to our analysis of currently available soil moisture data sets, this 3-month delay is attributable to a positive coupling between soil moisture, moisture flux convergence, and precipitation in the Sahel. Because of the physical connection between salinity, ocean-to-land moisture transport, and local soil moisture feedback, seasonal forecasts of Sahel precipitation can be improved by incorporating SSS into prediction models. Thus, expanded monitoring of ocean salinity should contribute to more skillful predictions of precipitation in vulnerable subtropical regions, such as the Sahel.
  • Article
    Impact of multidecadal variability in Atlantic SST on winter atmospheric blocking
    (American Meteorological Society, 2019-12-31) Kwon, Young-Oh ; Seo, Hyodae ; Ummenhofer, Caroline C. ; Joyce, Terrence M.
    Recent studies have suggested that coherent multidecadal variability exists between North Atlantic atmospheric blocking frequency and the Atlantic multidecadal variability (AMV). However, the role of AMV in modulating blocking variability on multidecadal times scales is not fully understood. This study examines this issue primarily using the NOAA Twentieth Century Reanalysis for 1901–2010. The second mode of the empirical orthogonal function for winter (December–March) atmospheric blocking variability in the North Atlantic exhibits oppositely signed anomalies of blocking frequency over Greenland and the Azores. Furthermore, its principal component time series shows a dominant multidecadal variability lagging AMV by several years. Composite analyses show that this lag is due to the slow evolution of the AMV sea surface temperature (SST) anomalies, which is likely driven by the ocean circulation. Following the warm phase of AMV, the warm SST anomalies emerge in the western subpolar gyre over 3–7 years. The ocean–atmosphere interaction over these 3–7-yr periods is characterized by the damping of the warm SST anomalies by the surface heat flux anomalies, which in turn reduce the overall meridional gradient of the air temperature and thus weaken the meridional transient eddy heat flux in the lower troposphere. The anomalous transient eddy forcing then shifts the eddy-driven jet equatorward, resulting in enhanced Rossby wave breaking and blocking on the northern flank of the jet over Greenland. The opposite is true with the AMV cold phases but with much shorter lags, as the evolution of SST anomalies differs in the warm and cold phases.
  • Article
    Revisiting the relationship among metrics of tropical expansion
    (American Meteorological Society, 2018-08-08) Waugh, Darryn W. ; Grise, Kevin M. ; Seviour, William J. M. ; Davis, Sean M. ; Davis, Nicholas ; Adam, Ori ; Son, Seok-Woo ; Simpson, Isla R. ; Staten, Paul W. ; Maycock, Amanda C. ; Ummenhofer, Caroline C. ; Birner, Thomas ; Ming, Alison
    There is mounting evidence that the width of the tropics has increased over the last few decades, but there are large differences in reported expansion rates. This is, likely, in part due to the wide variety of metrics that have been used to define the tropical width. Here we perform a systematic investigation into the relationship among nine metrics of the zonal-mean tropical width using preindustrial control and abrupt quadrupling of CO2 simulations from a suite of coupled climate models. It is shown that the latitudes of the edge of the Hadley cell, the midlatitude eddy-driven jet, the edge of the subtropical dry zones, and the Southern Hemisphere subtropical high covary interannually and exhibit similar long-term responses to a quadrupling of CO2. However, metrics based on the outgoing longwave radiation, the position of the subtropical jet, the break in the tropopause, and the Northern Hemisphere subtropical high have very weak covariations with the above metrics and/or respond differently to increases in CO2 and thus are not good indicators of the expansion of the Hadley cell or subtropical dry zone. The differing variability and responses to increases in CO2 among metrics highlights that care is needed when choosing metrics for studies of the width of the tropics and that it is important to make sure the metric used is appropriate for the specific phenomena and impacts being examined.
  • Article
    Influences of Pacific climate variability on decadal subsurface ocean heat content variations in the Indian Ocean
    (American Meteorological Society, 2018-04-30) Jin, Xiaolin ; Kwon, Young-Oh ; Ummenhofer, Caroline C. ; Seo, Hyodae ; Schwarzkopf, Franziska U. ; Biastoch, Arne ; Böning, Claus W. ; Wright, Jonathon S.
    Decadal variabilities in Indian Ocean subsurface ocean heat content (OHC; 50–300 m) since the 1950s are examined using ocean reanalyses. This study elaborates on how Pacific variability modulates the Indian Ocean on decadal time scales through both oceanic and atmospheric pathways. High correlations between OHC and thermocline depth variations across the entire Indian Ocean Basin suggest that OHC variability is primarily driven by thermocline fluctuations. The spatial pattern of the leading mode of decadal Indian Ocean OHC variability closely matches the regression pattern of OHC on the interdecadal Pacific oscillation (IPO), emphasizing the role of the Pacific Ocean in determining Indian Ocean OHC decadal variability. Further analyses identify different mechanisms by which the Pacific influences the eastern and western Indian Ocean. IPO-related anomalies from the Pacific propagate mainly through oceanic pathways in the Maritime Continent to impact the eastern Indian Ocean. By contrast, in the western Indian Ocean, the IPO induces wind-driven Ekman pumping in the central Indian Ocean via the atmospheric bridge, which in turn modifies conditions in the southwestern Indian Ocean via westward-propagating Rossby waves. To confirm this, a linear Rossby wave model is forced with wind stresses and eastern boundary conditions based on reanalyses. This linear model skillfully reproduces observed sea surface height anomalies and highlights both the oceanic connection in the eastern Indian Ocean and the role of wind-driven Ekman pumping in the west. These findings are also reproduced by OGCM hindcast experiments forced by interannual atmospheric boundary conditions applied only over the Pacific and Indian Oceans, respectively.
  • Article
    Impact of surface forcing on Southern Hemisphere atmospheric blocking in the Australia–New Zealand sector
    (American Meteorological Society, 2013-11-01) Ummenhofer, Caroline C. ; McIntosh, Peter C. ; Pook, Michael J. ; Risbey, James S.
    Characteristics of atmospheric blocking in the Southern Hemisphere (SH) are explored in atmospheric general circulation model (AGCM) simulations with the Community Atmosphere Model, version 3, with a particular focus on the Australia–New Zealand sector. Preferred locations of blocking in SH observations and the associated seasonal cycle are well represented in the AGCM simulations, but the observed magnitude of blocking is underestimated throughout the year, particularly in late winter and spring. This is related to overly zonal flow due to an enhanced meridional pressure gradient in the model, which results in a decreased amplitude of the longwave trough/ridge pattern. A range of AGCM sensitivity experiments explores the effect on SH blocking of tropical heating, midlatitude sea surface temperatures, and land–sea temperature gradients created over the Australian continent during austral winter. The combined effects of tropical heating and extratropical temperature gradients are further explored in a configuration that is favorable for blocking in the Australia–New Zealand sector with warm SST anomalies to the north of Australia, cold to the southwest of Australia, warm to the southeast, and cool Australian land temperatures. The blocking-favorable configuration indicates a significant strengthening of the subtropical jet and a reduction in midlatitude flow, which results from changes in the thermal wind. While these overall changes in mean climate, predominantly forced by the tropical heating, enhance blocking activity, the magnitude of atmospheric blocking compared to observations is still underestimated. The blocking-unfavorable configuration with surface forcing anomalies of opposite sign results in a weakening subtropical jet, enhanced midlatitude flow, and significantly reduced blocking.
  • Article
    Implications of North Atlantic sea surface salinity for summer precipitation over the U.S. Midwest : mechanisms and predictive value
    (American Meteorological Society, 2016-04-19) Li, Laifang ; Schmitt, Raymond W. ; Ummenhofer, Caroline C. ; Karnauskas, Kristopher B.
    Moisture originating from the subtropical North Atlantic feeds precipitation throughout the Western Hemisphere. This ocean-to-land moisture transport leaves its imprint on sea surface salinity (SSS), enabling SSS over the subtropical oceans to be used as an indicator of terrestrial precipitation. This study demonstrates that springtime SSS over the northwestern portion of the subtropical North Atlantic significantly correlates with summertime precipitation over the U.S. Midwest. The linkage between springtime SSS and the Midwest summer precipitation is established through ocean-to-land moisture transport followed by a soil moisture feedback over the southern United States. In the spring, high SSS over the northwestern subtropical Atlantic coincides with a local increase in moisture flux divergence. The moisture flux is then directed toward and converges over the southern United States, which experiences increased precipitation and soil moisture. The increased soil moisture influences the regional water cycle both thermodynamically and dynamically, leading to excessive summer precipitation in the Midwest. Thermodynamically, the increased soil moisture tends to moisten the lower troposphere and enhances the meridional humidity gradient north of 36°N. Thus, more moisture will be transported and converged into the Midwest by the climatological low-level wind. Dynamically, the increases in soil moisture over the southern United States enhance the west–east soil moisture gradient eastward of the Rocky Mountains, which can help to intensify the Great Plains low-level jet in the summer, converging more moisture into the Midwest. Owing to these robust physical linkages, the springtime SSS outweighs the leading SST modes in predicting the Midwest summer precipitation and significantly improves rainfall prediction in this region.
  • Article
    The role of the subtropical North Atlantic water cycle in recent US extreme precipitation events
    (Springer, 2017-04-13) Li, Laifang ; Schmitt, Raymond W. ; Ummenhofer, Caroline C.
    The role of the oceanic water cycle in the record-breaking 2015 warm-season precipitation in the US is analyzed. The extreme precipitation started in the Southern US in the spring and propagated northward to the Midwest and the Great Lakes in the summer of 2015. This seasonal evolution of precipitation anomalies represents a typical mode of variability of US warm-season precipitation. Analysis of the atmospheric moisture flux suggests that such a rainfall mode is associated with moisture export from the subtropical North Atlantic. In the spring, excessive precipitation in the Southern US is attributable to increased moisture flux from the northwestern portion of the subtropical North Atlantic. The North Atlantic moisture flux interacts with local soil moisture which enables the US Midwest to draw more moisture from the Gulf of Mexico in the summer. Further analysis shows that the relationship between the rainfall mode and the North Atlantic water cycle has become more significant in recent decades, indicating an increased likelihood of extremes like the 2015 case. Indeed, two record-high warm-season precipitation events, the 1993 and 2008 cases, both occurred in the more recent decades of the 66 year analysis period. The export of water from the North Atlantic leaves a marked surface salinity signature. The salinity signature appeared in the spring preceding all three extreme precipitation events analyzed in this study, i.e. a saltier-than-normal subtropical North Atlantic in spring followed by extreme Midwest precipitation in summer. Compared to the various sea surface temperature anomaly patterns among the 1993, 2008, and 2015 cases, the spatial distribution of salinity anomalies was much more consistent during these extreme flood years. Thus, our study suggests that preseason salinity patterns can be used for improved seasonal prediction of extreme precipitation in the Midwest.
  • Article
    How did ocean warming affect Australian rainfall extremes during the 2010/2011 La Niña event?
    (John Wiley & Sons, 2015-11-19) Ummenhofer, Caroline C. ; Sen Gupta, Alexander ; England, Matthew H. ; Taschetto, Andrea S. ; Briggs, Peter R. ; Raupach, Michael R.
    Extreme rainfall conditions in Australia during the 2010/2011 La Niña resulted in devastating floods claiming 35 lives, causing billions of dollars in damages, and far-reaching impacts on global climate, including a significant drop in global sea level and record terrestrial carbon uptake. Northeast Australian 2010/2011 rainfall was 84% above average, unusual even for a strong La Niña, and soil moisture conditions were unprecedented since 1950. Here we demonstrate that the warmer background state increased the likelihood of the extreme rainfall response. Using atmospheric general circulation model experiments with 2010/2011 ocean conditions with and without long-term warming, we identify the mechanisms that increase the likelihood of extreme rainfall: additional ocean warming enhanced onshore moisture transport onto Australia and ascent and precipitation over the northeast. Our results highlight the role of long-term ocean warming for modifying rain-producing atmospheric circulation conditions, increasing the likelihood of extreme precipitation for Australia during future La Niña events.
  • Article
    Evaluation of monsoon seasonality and the tropospheric biennial oscillation transitions in the CMIP models
    (American Geophysical Union, 2012-10-26) Li, Yue ; Jourdain, Nicolas C. ; Taschetto, Andrea S. ; Ummenhofer, Caroline C. ; Ashok, Karumuri ; Sen Gupta, Alexander
    Characteristics of the Indian and Australian summer monsoon systems, their seasonality and interactions are examined in a variety of observational datasets and in the Coupled Model Intercomparison Project Phase 3 and 5 (CMIP3 and CMIP5) climate models. In particular, it is examined whether preferred monsoon transitions between the two regions and from one year to another, that form parts of the Tropospheric Biennial Oscillation, can lead to improved predictive skill. An overall improvement in simulation of seasonality for both monsoons is seen in CMIP5 over CMIP3, with most CMIP5 models correctly simulating very low rainfall rates outside of the monsoon season. The predictability resulting from each transition is quantified using a Monte Carlo technique. The transition from strong/weak Indian monsoon to strong/weak Australian monsoon shows ∼15% enhanced predictability in the observations, in estimating whether the following monsoon will be stronger/weaker than the climatology. Most models also successfully simulate this transition. However, enhanced predictability for other transitions is less clear.
  • Article
    Recent tropical expansion: natural variability or forced response?
    (American Meteorological Society, 2019-02-06) Grise, Kevin M. ; Davis, Sean M. ; Simpson, Isla R. ; Waugh, Darryn W. ; Fu, Qiang ; Allen, Robert J. ; Rosenlof, Karen H. ; Ummenhofer, Caroline C. ; Karnauskas, Kristopher B. ; Maycock, Amanda C. ; Quan, Xiao-Wei ; Birner, Thomas ; Staten, Paul W.
    Previous studies have documented a poleward shift in the subsiding branches of Earth’s Hadley circulation since 1979 but have disagreed on the causes of these observed changes and the ability of global climate models to capture them. This synthesis paper reexamines a number of contradictory claims in the past literature and finds that the tropical expansion indicated by modern reanalyses is within the bounds of models’ historical simulations for the period 1979–2005. Earlier conclusions that models were underestimating the observed trends relied on defining the Hadley circulation using the mass streamfunction from older reanalyses. The recent observed tropical expansion has similar magnitudes in the annual mean in the Northern Hemisphere (NH) and Southern Hemisphere (SH), but models suggest that the factors driving the expansion differ between the hemispheres. In the SH, increasing greenhouse gases (GHGs) and stratospheric ozone depletion contributed to tropical expansion over the late twentieth century, and if GHGs continue increasing, the SH tropical edge is projected to shift further poleward over the twenty-first century, even as stratospheric ozone concentrations recover. In the NH, the contribution of GHGs to tropical expansion is much smaller and will remain difficult to detect in a background of large natural variability, even by the end of the twenty-first century. To explain similar recent tropical expansion rates in the two hemispheres, natural variability must be taken into account. Recent coupled atmosphere–ocean variability, including the Pacific decadal oscillation, has contributed to tropical expansion. However, in models forced with observed sea surface temperatures, tropical expansion rates still vary widely because of internal atmospheric variability.
  • Article
    On the predominant nonlinear response of the extratropical atmosphere to meridional shifts of the Gulf Stream
    (American Meteorological Society, 2017-11-07) Seo, Hyodae ; Kwon, Young-Oh ; Joyce, Terrence M. ; Ummenhofer, Caroline C.
    The North Atlantic atmospheric circulation response to the meridional shifts of the Gulf Stream (GS) path is examined using a large ensemble of high-resolution hemispheric-scale Weather Research and Forecasting Model simulations. The model is forced with a broad range of wintertime sea surface temperature (SST) anomalies derived from a lag regression on a GS index. The primary result of the model experiments, supported in part by an independent analysis of a reanalysis dataset, is that the large-scale quasi-steady North Atlantic circulation response is remarkably nonlinear about the sign and amplitude of the SST anomaly chosen over a wide range of GS shift scenarios. The nonlinear response prevails over the weak linear response and resembles the negative North Atlantic Oscillation (NAO), the leading intrinsic mode of variability in the model and the observations. Further analysis of the associated dynamics reveals that the nonlinear responses are accompanied by the shift of the North Atlantic eddy-driven jet, which is reinforced, with nearly equal importance, by the high-frequency transient eddy feedback and the low-frequency wave-breaking events. Additional sensitivity simulations confirm that the nonlinearity of the circulation response is a robust feature found over the broad parameter space encompassing not only the varied SST but also the absence/presence of tropical influence, the varying lateral boundary conditions, and the initialization scheme. The result highlights the fundamental importance of the intrinsically nonlinear transient eddy dynamics and the eddy–mean flow interactions in generating the nonlinear downstream response to the meridional shifts in the Gulf Stream.
  • Article
    Multidecadal Indian Ocean variability linked to the Pacific and implications for preconditioning Indian Ocean dipole events
    (American Meteorological Society, 2017-02-15) Ummenhofer, Caroline C. ; Biastoch, Arne ; Böning, Claus W.
    The Indian Ocean has sustained robust surface warming in recent decades, but the role of multidecadal variability remains unclear. Using ocean model hindcasts, characteristics of low-frequency Indian Ocean temperature variations are explored. Simulated upper-ocean temperature changes across the Indian Ocean in the hindcast are consistent with those recorded in observational products and ocean reanalyses. Indian Ocean temperatures exhibit strong warming trends since the 1950s limited to the surface and south of 30°S, while extensive subsurface cooling occurs over much of the tropical Indian Ocean. Previous work focused on diagnosing causes of these long-term trends in the Indian Ocean over the second half of the twentieth century. Instead, the temporal evolution of Indian Ocean subsurface heat content is shown here to reveal distinct multidecadal variations associated with the Pacific decadal oscillation, and the long-term trends are thus interpreted to result from aliasing of the low-frequency variability. Transmission of the multidecadal signal occurs via an oceanic pathway through the Indonesian Throughflow and is manifest across the Indian Ocean centered along 12°S as westward-propagating Rossby waves modulating thermocline and subsurface heat content variations. Resulting low-frequency changes in the eastern Indian Ocean thermocline depth are associated with decadal variations in the frequency of Indian Ocean dipole (IOD) events, with positive IOD events unusually common in the 1960s and 1990s with a relatively shallow thermocline. In contrast, the deeper thermocline depth in the 1970s and 1980s is associated with frequent negative IOD and rare positive IOD events. Changes in Pacific wind forcing in recent decades and associated rapid increases in Indian Ocean subsurface heat content can thus affect the basin’s leading mode of variability, with implications for regional climate and vulnerable societies in surrounding countries.
  • Article
    Multi-scale drought and ocean–atmosphere variability in monsoon Asia
    (IOP Science, 2015-07-17) Hernandez, Manuel ; Ummenhofer, Caroline C. ; Anchukaitis, Kevin J.
    Spatially extensive and persistent drought episodes have repeatedly influenced human history, including the 'Strange Parallels' drought event in monsoon Asia during the mid-18th century. Here we explore the dynamics of sustained monsoon failure using observed and tree-ring reconstructed drought patterns and a 1300-year pre-industrial community earth system model control run. Both modern observational and climate model drought patterns during years with extremely weakened South Asian monsoon resemble those reconstructed for the Strange Parallels drought. Model analysis reveals that this pattern arises during boreal spring over Southeast Asia, with decreased precipitation and moisture flux, while related summertime climate anomalies are confined to the Indian subcontinent. Years with simulated South Asian drying exhibit canonical El Niño conditions over the Pacific and associated shifts in the Walker circulation. In contrast, multi-year drought periods, resembling those sustained during the Strange Parallels drought, feature anomalous Pacific warming around the dateline, typical of El Niño Modoki events.
  • Article
    Meridional Gulf Stream shifts can influence wintertime variability in the North Atlantic storm track and Greenland blocking.
    (American Geophysical Union, 2019-01-29) Joyce, Terrence M. ; Kwon, Young-Oh ; Seo, Hyodae ; Ummenhofer, Caroline C.
    After leaving the U.S. East Coast, the northward flowing Gulf Stream (GS) becomes a zonal jet and carries along its frontal characteristics of strong flow and sea surface temperature gradients into the North Atlantic at midlatitudes. The separation location where it leaves the coast is also an anchor point for the wintertime synoptic storm track across North America to continue to develop and head across the ocean. We examine the meridional variability of the separated GS path on interannual to decadal time scales as an agent for similar changes in the storm track and blocking variability at midtroposphere from 1979 to 2012. We find that periods of northerly (southerly) GS path are associated with increased (suppressed) excursions of the synoptic storm track to the northeast over the Labrador Sea and reduced (enhanced) Greenland blocking. In both instances, GS shifts lead those in the midtroposphere by a few months.
  • Article
    Cold tongue and warm pool ENSO events in CMIP5 : mean state and future projections
    (American Meteorological Society, 2014-04-15) Taschetto, Andrea S. ; Sen Gupta, Alexander ; Jourdain, Nicolas C. ; Santoso, Agus ; Ummenhofer, Caroline C. ; England, Matthew H.
    The representation of the El Niño–Southern Oscillation (ENSO) under historical forcing and future projections is analyzed in 34 models from the Coupled Model Intercomparison Project phase 5 (CMIP5). Most models realistically simulate the observed intensity and location of maximum sea surface temperature (SST) anomalies during ENSO events. However, there exist systematic biases in the westward extent of ENSO-related SST anomalies, driven by unrealistic westward displacement and enhancement of the equatorial wind stress in the western Pacific. Almost all CMIP5 models capture the observed asymmetry in magnitude between the warm and cold events (i.e., El Niños are stronger than La Niñas) and between the two types of El Niños: that is, cold tongue (CT) El Niños are stronger than warm pool (WP) El Niños. However, most models fail to reproduce the asymmetry between the two types of La Niñas, with CT stronger than WP events, which is opposite to observations. Most models capture the observed peak in ENSO amplitude around December; however, the seasonal evolution of ENSO has a large range of behavior across the models. The CMIP5 models generally reproduce the duration of CT El Niños but have biases in the evolution of the other types of events. The evolution of WP El Niños suggests that the decay of this event occurs through heat content discharge in the models rather than the advection of SST via anomalous zonal currents, as seems to occur in observations. No consistent changes are seen across the models in the location and magnitude of maximum SST anomalies, frequency, or temporal evolution of these events in a warmer world.
  • Preprint
    The El Niño – La Niña cycle and recent trends in supply and demand of net primary productivity in African drylands
    ( 2016-07) Abdi, Abdulhakim ; Vrieling, Anton ; Yengoh, Genesis T. ; Anyamba, Assaf ; Seaquist, Jonathan ; Ummenhofer, Caroline C. ; Ardö, Jonas
    Inter-annual climatic variability over a large portion of sub-Saharan Africa is under the influence of the El Niño-Southern Oscillation (ENSO). Extreme variability in climate is a threat to rural livelihoods in sub-Saharan Africa, yet the role of ENSO in the balance between supply and demand of net primary productivity (NPP) over this region is unclear. Here, we analyze the impact of ENSO on this balance in a spatially explicit framework using gridded population data from the WorldPop project, satellite-derived data on NPP supply, and statistical data from the United Nations. Our analyses demonstrate that between 2000 and 2013 fluctuations in the supply of NPP associated with moderate ENSO events average ±2.8 g C m-2 yr-1 across sub-Saharan drylands. The greatest sensitivity is in arid Southern Africa where a +1oC change in the Niño-3.4 sea surface temperature index is associated with a mean change in NPP supply of -6.6 g C m-2 yr-1. Concurrently, the population-driven trend in NPP demand averages 3.5 g C m-2 yr-1 over the entire region with densely populated urban areas exhibiting the highest mean demand for NPP. Our findings highlight the importance of accounting for the role ENSO plays in modulating the balance between supply and demand of NPP in sub-Saharan drylands. An important implication of these findings is that increase in NPP demand for socio-economic metabolism must be taken into account within the context of climate-modulated supply
  • Preprint
    Decoupling of monsoon activity across the northern and southern Indo-Pacific during the Late Glacial
    ( 2017-09) Denniston, Rhawn F. ; Asmerom, Yemane ; Polyak, Victor J. ; Wanamaker, Alan D. ; Ummenhofer, Caroline C. ; Humphreys, William F. ; Cugley, John ; Woods, David ; Lucker, Stephanie
    Recent studies of stalagmites from the Southern Hemisphere tropics of Indonesia revealed two shifts in monsoon activity not apparent in records from the Northern Hemisphere sectors of the Austral-Asian monsoon system: an interval of enhanced rainfall at ~19 ka, immediately prior to Heinrich Stadial 1, and a sharp increase in precipitation at ~9 ka. Determining whether these events are site-specific or regional is important for understanding the full range of sensitivities of the Austral-Asian monsoon. We present a discontinuous 40 kyr carbon isotope record of stalagmites from two caves in the Kimberley region of the north-central Australian tropics. Heinrich stadials are represented by pronounced negative carbon isotopic anomalies, indicative of enhanced rainfall associated with a southward shift of the intertropical convergence zone and consistent with hydroclimatic changes observed across Asia and the Indo- Pacific. Between 20-8 ka, however, the Kimberley stalagmites, like the Indonesian record, reveal decoupling of monsoon behavior from Southeast Asia, including the early deglacial wet period (which we term the Late Glacial Pluvial) and the abrupt strengthening of early Holocene monsoon rainfall.
  • Article
    Can Australian multiyear droughts and wet spells be generated in the absence of oceanic variability?
    (American Meteorological Society, 2016-08-19) Taschetto, Andrea S. ; Sen Gupta, Alexander ; Ummenhofer, Caroline C. ; England, Matthew H.
    Anomalous conditions in the tropical oceans, such as those related to El Niño–Southern Oscillation and the Indian Ocean dipole, have been previously blamed for extended droughts and wet periods in Australia. Yet the extent to which Australian wet and dry spells can be driven by internal atmospheric variability remains unclear. Natural variability experiments are examined to determine whether prolonged extreme wet and dry periods can arise from internal atmospheric and land variability alone. Results reveal that this is indeed the case; however, these dry and wet events are found to be less severe than in simulations incorporating coupled oceanic variability. Overall, ocean feedback processes increase the magnitude of Australian rainfall variability by about 30% and give rise to more spatially coherent rainfall impacts. Over mainland Australia, ocean interactions lead to more frequent extreme events, particularly during the rainy season. Over Tasmania, in contrast, ocean–atmosphere coupling increases mean rainfall throughout the year. While ocean variability makes Australian rainfall anomalies more severe, droughts and wet spells of duration longer than three years are equally likely to occur in both atmospheric- and ocean-driven simulations. Moreover, they are essentially indistinguishable from what one expects from a Gaussian white noise distribution. Internal atmosphere–land-driven megadroughts and megapluvials that last as long as ocean-driven events are also identified in the simulations. This suggests that oceanic variability may be less important than previously assumed for the long-term persistence of Australian rainfall anomalies. This poses a challenge to accurate prediction of long-term dry and wet spells for Australia.
  • Article
    Emerging European winter precipitation pattern linked to atmospheric circulation changes over the North Atlantic region in recent decades
    (John Wiley & Sons, 2017-08-25) Ummenhofer, Caroline C. ; Seo, Hyodae ; Kwon, Young-Oh ; Parfitt, Rhys ; Brands, Swen ; Joyce, Terrence M.
    Dominant European winter precipitation patterns over the past century, along with their associated extratropical North Atlantic circulation changes, are evaluated using cluster analysis. Contrary to the four regimes traditionally identified based on daily wintertime atmospheric circulation patterns, five distinct seasonal precipitation regimes are detected here. Recurrent precipitation patterns in each regime are linked to changes in atmospheric blocking, storm track, and sea surface temperatures across the North Atlantic region. Multidecadal variability in the frequency of the precipitation patterns reveals more (fewer) winters with wet conditions in northern (southern) Europe in recent decades and an emerging distinct pattern of enhanced wintertime precipitation over the northern British Isles. This pattern has become unusually common since the 1980s and is associated with changes in moisture transport and more frequent atmospheric river events. The observed precipitation changes post-1950 coincide with changes in storm track activity over the central/eastern North Atlantic toward the northern British Isles.