Condron
Alan
Condron
Alan
No Thumbnail Available
Search Results
Now showing
1 - 10 of 10
-
ArticleAssessing the statistical uniqueness of the Younger Dryas: a robust multivariate analysis(European Geosciences Union, 2021-06-30) Nye, Henry ; Condron, AlanDuring the last glacial period (ca. 120–11 kyr BP), dramatic temperature swings, known as Dansgaard–Oeschger (D–O) events, are clearly manifest in high-resolution oxygen isotope records from the Greenland Ice Sheet. Although variability in the Atlantic Meridional Overturning Circulation (AMOC) is often invoked, a unified explanation for what caused these “sawtooth-shaped” climate patterns has yet to be accepted. Of particular interest is the most recent D–O-shaped climate pattern that occurred from ∼ 14 600 to 11 500 years ago – the Bølling–Allerød (BA) warm interstadial and the subsequent Younger Dryas (YD) cold stadial. Unlike earlier D–O stadials, the YD is frequently considered a unique event, potentially resulting from a rerouting and/or flood of glacial meltwater into the North Atlantic or a meteorite impact. Yet, these mechanisms are less frequently considered as the cause of the earlier stadials. Using a robust multivariate outlier detection scheme – a novel approach for traditional paleoclimate research – we show that the pattern of climate change during the BA/YD is not statistically different from the other D–O events in the Greenland record and that it should not necessarily be considered unique when investigating the drivers of abrupt climate change. In so doing, our results present a novel statistical framework for paleoclimatic data analysis.
-
ArticleArctic sea ice export as a driver of deglacial climate(Geological Society of America, 2020-01-31) Condron, Alan ; Joyce, Anthony J. ; Bradley, Raymond S.A widespread theory in paleoclimatology suggests that changes in freshwater discharge to the Nordic (Greenland, Norwegian, and Icelandic) Seas from ice sheets and proglacial lakes over North America played a role in triggering episodes of abrupt climate change during deglaciation (21–8 ka) by slowing the strength of the Atlantic Meridional Overturning circulation (AMOC). Yet, proving this link has been problematic, as climate models are unable to produce centennial-to-millennial–length reductions in overturning from short-lived outburst floods, while periods of iceberg discharge during Heinrich Event 1 (ca. 16 ka) may have occurred after the climate had already begun to cool. Here, results from a series of numerical model experiments are presented to show that prior to deglaciation, sea ice could have become tens of meters thick over large parts of the Arctic Basin, forming an enormous reservoir of freshwater independent from terrestrial sources. Our model then shows that deglacial sea-level rise, changes in atmospheric circulation, and terrestrial outburst floods caused this ice to be exported through Fram Strait, where its subsequent melt freshened the Nordic Seas enough to weaken the AMOC. Given that both the volume of ice stored in the Arctic Basin and the magnitude of the simulated export events exceed estimates of the volumes and fluxes of meltwater periodically discharged from proglacial Lake Agassiz, our results show that non-terrestrial freshwater sources played an important role in causing past abrupt climate change.
-
ArticleTiming of iceberg scours and massive ice-rafting events in the subtropical North Atlantic(Nature Research, 2021-06-16) Condron, Alan ; Hill, Jenna C.High resolution seafloor mapping shows extraordinary evidence that massive (>300 m thick) icebergs once drifted >5,000 km south along the eastern United States, with >700 iceberg scours now identified south of Cape Hatteras. Here we report on sediment cores collected from several buried scours that show multiple plow marks align with Heinrich Event 3 (H3), ~31,000 years ago. Numerical glacial iceberg simulations indicate that the transport of icebergs to these sites occurs during massive, but short-lived, periods of elevated meltwater discharge. Transport of icebergs to the subtropics, away from deep water formation sites, may explain why H3 was associated with only a modest increase in ice-rafting across the subpolar North Atlantic, and implies a complex relationship between freshwater forcing and climate change. Stratigraphy from subbottom data across the scour marks shows there are additional features that are both older and younger, and may align with other periods of elevated meltwater discharge.
-
ArticleFreshwater routing in eddy-permitting simulations of the last deglacial: the impact of realistic freshwater discharge(European Geosciences Union, 2021-11-02) Love, Ryan ; Andres, Heather J. ; Condron, Alan ; Tarasov, LevFreshwater, in the form of glacial runoff, is hypothesized to play a critical role in centennial- to millennial-scale climate variability, such as the Younger Dryas and Dansgaard–Oeschger events, but this relationship is not straightforward. Large-scale glacial runoff events, such as Meltwater Pulse 1a (MWP1a), are not always temporally proximal to subsequent large-scale cooling. Moreover, the typical design of hosing experiments that support this relationship tends to artificially amplify the climate response. This study explores the impact that limitations in the representation of runoff in conventional “hosing” simulations has on our understanding of this relationship by examining where coastally released freshwater is transported when it reaches the ocean. We particularly focus on the impact of (1) the injection of freshwater directly over sites of deep-water formation (DWF) rather than at runoff locations (i.e. hosing), (2) excessive freshwater injection volumes (often by a factor of 5), and (3) the use of present-day (rather than palaeo) ocean gateways. We track the routing of glaciologically constrained freshwater volumes from four different inferred injection locations in a suite of eddy-permitting glacial ocean simulations using the Massachusetts Institute of Technology General Circulation Model (MITgcm) under both open and closed Bering Strait conditions. Restricting freshwater forcing values to realistic ranges results in less spreading of freshwater across the North Atlantic and indicates that the freshwater anomalies over DWF sites depend strongly on the geographical location of meltwater input. In particular, freshwater released into the Gulf of Mexico generates a very weak freshwater signal over DWF regions as a result of entrainment by the turbulent Gulf Stream. In contrast, freshwater released into the Arctic with an open Bering Strait or from the Eurasian ice sheet is found to generate the largest salinity anomalies over DWF regions in the North Atlantic and GIN (Greenland–Iceland–Norwegian) seas region respectively. Experiments show that when the Bering Strait is open, the Mackenzie River source exhibits more than twice as much freshening of the North Atlantic deep-water formation regions as when the Bering Strait is closed. Our results illustrate that applying freshwater hosing directly into the North Atlantic with even “realistic” freshwater amounts still overestimates the amount of terrestrial runoff reaching DWF regions. Given the simulated salinity anomaly distributions and the lack of reconstructed impact on deep-water formation during the Bølling–Allerød, our results support that the majority of the North American contribution to MWP1a was not routed through the Mackenzie River.
-
ArticleFuture climate response to Antarctic Ice Sheet melt caused by anthropogenic warming(American Association for the Advancement of Science, 2020-09-23) Sadai, Shaina ; Condron, Alan ; DeConto, Robert M. ; Pollard, DavidMeltwater and ice discharge from a retreating Antarctic Ice Sheet could have important impacts on future global climate. Here, we report on multi-century (present–2250) climate simulations performed using a coupled numerical model integrated under future greenhouse-gas emission scenarios IPCC RCP4.5 and RCP8.5, with meltwater and ice discharge provided by a dynamic-thermodynamic ice sheet model. Accounting for Antarctic discharge raises subsurface ocean temperatures by >1°C at the ice margin relative to simulations ignoring discharge. In contrast, expanded sea ice and 2° to 10°C cooler surface air and surface ocean temperatures in the Southern Ocean delay the increase of projected global mean anthropogenic warming through 2250. In addition, the projected loss of Arctic winter sea ice and weakening of the Atlantic Meridional Overturning Circulation are delayed by several decades. Our results demonstrate a need to accurately account for meltwater input from ice sheets in order to make confident climate predictions.
-
ArticleThe role of northeast pacific meltwater events in deglacial climate change(American Association for the Advancement of Science, 2020-02-26) Praetorius, Summer K. ; Condron, Alan ; Mix, Alan C. ; Walczak, Maureen H. ; McKay, Jennifer L. ; Du, JianghuiColumbia River megafloods occurred repeatedly during the last deglaciation, but the impacts of this fresh water on Pacific hydrography are largely unknown. To reconstruct changes in ocean circulation during this period, we used a numerical model to simulate the flow trajectory of Columbia River megafloods and compiled records of sea surface temperature, paleo-salinity, and deep-water radiocarbon from marine sediment cores in the Northeast Pacific. The North Pacific sea surface cooled and freshened during the early deglacial (19.0-16.5 ka) and Younger Dryas (12.9-11.7 ka) intervals, coincident with the appearance of subsurface water masses depleted in radiocarbon relative to the sea surface. We infer that Pacific meltwater fluxes contributed to net Northern Hemisphere cooling prior to North Atlantic Heinrich Events, and again during the Younger Dryas stadial. Abrupt warming in the Northeast Pacific similarly contributed to hemispheric warming during the Bølling and Holocene transitions. These findings underscore the importance of changes in North Pacific freshwater fluxes and circulation in deglacial climate events.
-
ArticleMid-Holocene Antarctic sea-ice increase driven by marine ice sheet retreat(European Geosciences Union, 2021-01-05) Ashley, Kate E. ; McKay, Robert ; Etourneau, Johan ; Jimenez-Espejo, Francisco J. ; Condron, Alan ; Albot, Anna ; Crosta, Xavier ; Riesselman, Christina ; Seki, Osamu ; Massé, Guillaume ; Golledge, Nicholas ; Gasson, Edward ; Lowry, Daniel P. ; Barrand, Nicholas E. ; Johnson, Katelyn ; Bertler, Nancy ; Escutia, Carlota ; Dunbar, Robert B. ; Bendle, James A.Over recent decades Antarctic sea-ice extent has increased, alongside widespread ice shelf thinning and freshening of waters along the Antarctic margin. In contrast, Earth system models generally simulate a decrease in sea ice. Circulation of water masses beneath large-cavity ice shelves is not included in current Earth System models and may be a driver of this phenomena. We examine a Holocene sediment core off East Antarctica that records the Neoglacial transition, the last major baseline shift of Antarctic sea ice, and part of a late-Holocene global cooling trend. We provide a multi-proxy record of Holocene glacial meltwater input, sediment transport, and sea-ice variability. Our record, supported by high-resolution ocean modelling, shows that a rapid Antarctic sea-ice increase during the mid-Holocene (∼ 4.5 ka) occurred against a backdrop of increasing glacial meltwater input and gradual climate warming. We suggest that mid-Holocene ice shelf cavity expansion led to cooling of surface waters and sea-ice growth that slowed basal ice shelf melting. Incorporating this feedback mechanism into global climate models will be important for future projections of Antarctic changes.
-
ArticleIce and ocean constraints on early human migrations into North America along the Pacific coast(National Academy of Sciences, 2023-02-06) Praetorius, Summer K. ; Alder, Jay R. ; Condron, Alan ; Mix, Alan C. ; Walczak, Maureen H. ; Caissie, Beth E. ; Erlandson, Jon M.Founding populations of the first Americans likely occupied parts of Beringia during the Last Glacial Maximum (LGM). The timing, pathways, and modes of their southward transit remain unknown, but blockage of the interior route by North American ice sheets between ~26 and 14 cal kyr BP (ka) favors a coastal route during this period. Using models and paleoceanographic data from the North Pacific, we identify climatically favorable intervals when humans could have plausibly traversed the Cordilleran coastal corridor during the terminal Pleistocene. Model simulations suggest that northward coastal currents strengthened during the LGM and at times of enhanced freshwater input, making southward transit by boat more difficult. Repeated Cordilleran glacial-calving events would have further challenged coastal transit on land and at sea. Following these events, ice-free coastal areas opened and seasonal sea ice was present along the Alaskan margin until at least 15 ka. Given evidence for humans south of the ice sheets by 16 ka and possibly earlier, we posit that early people may have taken advantage of winter sea ice that connected islands and coastal refugia. Marine ice-edge habitats offer a rich food supply and traversing coastal sea ice could have mitigated the difficulty of traveling southward in watercraft or on land over glaciers. We identify 24.5 to 22 ka and 16.4 to 14.8 ka as environmentally favorable time periods for coastal migration, when climate conditions provided both winter sea ice and ice-free summer conditions that facilitated year-round marine resource diversity and multiple modes of mobility along the North Pacific coast.
-
ArticleTowing Icebergs to Arid Regions to Reduce Water Scarcity(Nature Research, 2023-01-07) Condron, AlanExpanding agriculture, rising global population, and shifts in climate are placing increasing demands on existing water resources, especially in regions currently experiencing extreme drought. Finding new and reliable water sources is an urgent challenge. A long-held idea is that icebergs could be towed to arid coastal regions and harvested to help alleviate water stress. Here, a numerical model is used to simulate the deterioration of icebergs towed to Cape Town, South Africa and the United Arab Emirates (UAE). Moved at a speed of 0.5 m/s, an iceberg able to reach Cape Town must be at least ~ 300 m long and ~ 200 m thick at its time of capture. An iceberg this size would only require ~ 1 to 2 vessels to move and would deliver ~ 2.4 million liters of water. Placing an insulating material around the same iceberg to inhibit wave-induced erosion results in 4.5 billion liters of deliverable water. To reach the UAE, an unprotected iceberg needs to be at least ~ 2000 m long and 600 m thick, or 1250 m long and 600 m thick if insulated from wave-induced erosion. Icebergs of these dimensions would require ~ 10 to 20 vessels to move. Results are discussed in terms of the size and number of icebergs needed to help alleviate drought. In theory, small icebergs can easily be moved to South Africa; the challenge is likely to be harvesting the water as icebergs left offshore in a subtropical environment melt after a few days to weeks.
-
ArticleModeling iceberg longevity and distribution during Heinrich Events(American Geophysical Union, 2022-05-17) Fendrock, Michaela ; Condron, Alan ; McGee, DavidDuring the last glacial period (120–12 ka), the Laurentide ice sheet discharged large numbers of icebergs into the North Atlantic. These icebergs carried sediments that were dropped as the icebergs melted, leaving a record of past iceberg activity on the floor of the subpolar North Atlantic. Periods of significant iceberg discharge and increased ice-rafted debris (IRD) deposition, are known as Heinrich Events. These events coincide with global climate change, and the melt from the icebergs involved is frequently hypothesized to have contributed to these changes in climate by adding a significant volume of cold, fresh water to the North Atlantic. Using an iceberg model coupled with the Massachusetts Institute of Technology Global Circulation Model numerical circulation model, we explore the various factors controlling iceberg drift and rates of melt that influence the spatial patterns of IRD deposition during Heinrich Events. In addition to clarifying the influence of sea surface temperature and wind on the path of an armada of icebergs, we demonstrate that the same volume of ice can produce very different patterns of iceberg drift simply by altering the size of icebergs involved. We note also a significant difference in the seasonal locations of icebergs, influenced primarily by the changing winds, and show that the spatial patterns of IRD for Heinrich Event 1 most closely corresponds to where icebergs are located during the summer months. Consistent with proxy evidence, the ocean must be several degrees colder than temperatures estimated for the Last Glacial Maximum in order for icebergs to travel the distance implied by Heinrich Layers.