Bourland William A.

No Thumbnail Available
Last Name
Bourland
First Name
William A.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Genealogical analyses of multiple loci of litostomatean ciliates (Protista, Ciliophora, Litostomatea)
    (Elsevier, 2012-07-09) Vd'acny, Peter ; Bourland, William A. ; Orsi, William D. ; Epstein, Slava S. ; Foissner, Wilhelm
    The class Litostomatea is a highly diverse ciliate taxon comprising hundreds of free-living and endocommensal species. However, their traditional morphology-based classification conflicts with 18S rRNA gene phylogenies indicating (1) a deep bifurcation of the Litostomatea into Rhynchostomatia and Haptoria + Trichostomatia, and (2) body polarization and simplification of the oral apparatus as main evolutionary trends in the Litostomatea. To test whether 18S rRNA molecules provide a suitable proxy for litostomatean evolutionary history, we used eighteen new ITS1-5.8S rRNA-ITS2 region sequences from various free-living litostomatean orders. These single- and multiple-locus analyses are in agreement with previous 18S rRNA gene phylogenies, supporting that both 18S rRNA gene and ITS region sequences are effective tools for resolving phylogenetic relationships among the litostomateans. Despite insertions, deletions and mutational saturations in the ITS region, the present study shows that ITS1 and ITS2 molecules can be used to infer phylogenetic relationships not only at species level but also at higher taxonomic ranks when their secondary structure information is utilized to aid alignment.
  • Article
    Structured multiple endosymbiosis of bacteria and archaea in a ciliate from marine sulfidic sediments : a survival mechanism in low oxygen, sulfidic sediments?
    (Frontiers Media, 2011-03-25) Edgcomb, Virginia P. ; Leadbetter, Edward R. ; Bourland, William A. ; Beaudoin, David J. ; Bernhard, Joan M.
    Marine micro-oxic to sulfidic environments are sites of intensive biogeochemical cycling and elemental sequestration, where prokaryotes are major driving forces mediating carbon, nitrogen, sulfur, phosphorus, and metal cycles, important from both biogeochemical and evolutionary perspectives. Associations between single-celled eukaryotes and bacteria and/or archaea are common in such habitats. Here we describe a ciliate common in the micro-oxic to anoxic, typically sulfidic, sediments of Santa Barbara Basin (CA, USA). The ciliate is 95% similar to Parduzcia orbis (18S rRNA). Transmission electron micrographs reveal clusters of at least three different endobiont types organized within membrane-bound sub-cellular regions. Catalyzed reporter deposition–fluorescent in situ hybridization and 16S rRNA clone libraries confirm the symbionts include up to two sulfate reducers (Desulfobulbaceae, Desulfobacteraceae), a methanogen (Methanobacteriales), and possibly a Bacteroidete (Cytophaga) and a Type I methanotroph, suggesting synergistic metabolisms in this environment. This case study is discussed in terms of implications to biogeochemistry, and benthic ecology.