Miloslavich
Patricia
Miloslavich
Patricia
No Thumbnail Available
Search Results
Now showing
1 - 3 of 3
-
ArticleDelivering sustained, coordinated, and integrated observations of the Southern Ocean for global impact(Frontiers Media, 2019-08-08) Newman, Louise ; Heil, Petra ; Trebilco, Rowan ; Katsumata, Katsuro ; Constable, Andrew ; van Wijk, Esmee ; Assmann, Karen ; Beja, Joana ; Bricher, Phillippa ; Coleman, Richard ; Costa, Daniel P. ; Diggs, Stephen ; Farneti, Riccardo ; Fawcett, Sarah E. ; Gille, Sarah T. ; Hendry, Katharine R. ; Henley, Sian ; Hofmann, Eileen E. ; Maksym, Ted ; Mazloff, Matthew R. ; Meijers, Andrew J. S. ; Meredith, Michael M. ; Moreau, Sebastien ; Ozsoy, Burcu ; Robertson, Robin ; Schloss, Irene ; Schofield, Oscar M. E. ; Shi, Jiuxin ; Sikes, Elisabeth L. ; Smith, Inga J. ; Swart, Sebastiaan ; Wahlin, Anna ; Williams, Guy ; Williams, Michael J. M. ; Herraiz-Borreguero, Laura ; Kern, Stefan ; Lieser, Jan ; Massom, Robert A. ; Melbourne-Thomas, Jessica ; Miloslavich, Patricia ; Spreen, GunnarThe Southern Ocean is disproportionately important in its effect on the Earth system, impacting climatic, biogeochemical, and ecological systems, which makes recent observed changes to this system cause for global concern. The enhanced understanding and improvements in predictive skill needed for understanding and projecting future states of the Southern Ocean require sustained observations. Over the last decade, the Southern Ocean Observing System (SOOS) has established networks for enhancing regional coordination and research community groups to advance development of observing system capabilities. These networks support delivery of the SOOS 20-year vision, which is to develop a circumpolar system that ensures time series of key variables, and delivers the greatest impact from data to all key end-users. Although the Southern Ocean remains one of the least-observed ocean regions, enhanced international coordination and advances in autonomous platforms have resulted in progress toward sustained observations of this region. Since 2009, the Southern Ocean community has deployed over 5700 observational platforms south of 40°S. Large-scale, multi-year or sustained, multidisciplinary efforts have been supported and are now delivering observations of essential variables at space and time scales that enable assessment of changes being observed in Southern Ocean systems. The improved observational coverage, however, is predominantly for the open ocean, encompasses the summer, consists of primarily physical oceanographic variables, and covers surface to 2000 m. Significant gaps remain in observations of the ice-impacted ocean, the sea ice, depths >2000 m, the air-ocean-ice interface, biogeochemical and biological variables, and for seasons other than summer. Addressing these data gaps in a sustained way requires parallel advances in coordination networks, cyberinfrastructure and data management tools, observational platform and sensor technology, two-way platform interrogation and data-transmission technologies, modeling frameworks, intercalibration experiments, and development of internationally agreed sampling standards and requirements of key variables. This paper presents a community statement on the major scientific and observational progress of the last decade, and importantly, an assessment of key priorities for the coming decade, toward achieving the SOOS vision and delivering essential data to all end-users.
-
ArticleIntegrated observations and informatics improve understanding of changing marine ecosystems(Frontiers Media, 2018-11-16) Benson, Abigail ; Brooks, Cassandra M. ; Canonico, Gabrielle ; Duffy, J. Emmett ; Muller-Karger, Frank E. ; Sosik, Heidi M. ; Miloslavich, Patricia ; Klein, EduardoMarine ecosystems have numerous benefits for human societies around the world and many policy initiatives now seek to maintain the health of these ecosystems. To enable wise decisions, up to date and accurate information on marine species and the state of the environment they live in is required. Moreover, this information needs to be openly accessible to build indicators and conduct timely assessments that decision makers can use. The questions and problems being addressed demand global-scale investigations, transdisciplinary science, and mechanisms to integrate and distribute data that otherwise would appear to be disparate. Essential Ocean Variables (EOVs) and marine Essential Biodiversity Variables (EBVs), conceptualized by the Global Ocean Observing System (GOOS) and the Marine Biodiversity Observation Network (MBON), respectively, guide observation of the ocean. Additionally, significant progress has been made to coordinate efforts between existing programs, such as the GOOS, MBON, and Ocean Biogeographic Information System collaboration agreement. Globally and nationally relevant indicators and assessments require increased sharing of data and analytical methods, sustained long-term and large-scale observations, and resources to dedicated to these tasks. We propose a vision and key tenets as a guiding framework for building a global integrated system for understanding marine biological diversity and processes to address policy and resource management needs. This framework includes: using EOVs and EBVs and implementing the guiding principles of Findable, Accessible, Interoperable, Reusable (FAIR) data and action ecology. In doing so, we can encourage relevant, rapid, and integrative scientific advancement that can be implemented by decision makers to maintain marine ecosystem health.
-
ArticleGlobally consistent quantitative observations of planktonic ecosystems(Frontiers Media, 2019-04-25) Lombard, Fabien ; Boss, Emmanuel S. ; Waite, Anya M. ; Vogt, Meike ; Uitz, Julia ; Stemmann, Lars ; Sosik, Heidi M. ; Schulz, Jan ; Romagnan, Jean-Baptiste ; Picheral, Marc ; Pearlman, Jay ; Ohman, Mark D. ; Niehoff, Barbara ; Möller, Klas O. ; Miloslavich, Patricia ; Lara-Lpez, Ana ; Kudela, Raphael M. ; Lopes, Rubens M. ; Kiko, Rainer ; Karp-Boss, Lee ; Jaffe, Jules S. ; Iversen, Morten H. ; Irisson, Jean-Olivier ; Fennel, Katja ; Hauss, Helena ; Guidi, Lionel ; Gorsky, Gabriel ; Giering, Sarah L. C. ; Gaube, Peter ; Gallager, Scott M. ; Dubelaar, George ; Cowen, Robert K. ; Carlotti, François ; Briseño-Avena, Christian ; Berline, Leo ; Benoit-Bird, Kelly J. ; Bax, Nicholas ; Batten, Sonia ; Ayata, Sakina Dorothée ; Artigas, Luis Felipe ; Appeltans, WardIn this paper we review the technologies available to make globally quantitative observations of particles in general—and plankton in particular—in the world oceans, and for sizes varying from sub-microns to centimeters. Some of these technologies have been available for years while others have only recently emerged. Use of these technologies is critical to improve understanding of the processes that control abundances, distributions and composition of plankton, provide data necessary to constrain and improve ecosystem and biogeochemical models, and forecast changes in marine ecosystems in light of climate change. In this paper we begin by providing the motivation for plankton observations, quantification and diversity qualification on a global scale. We then expand on the state-of-the-art, detailing a variety of relevant and (mostly) mature technologies and measurements, including bulk measurements of plankton, pigment composition, uses of genomic, optical and acoustical methods as well as analysis using particle counters, flow cytometers and quantitative imaging devices. We follow by highlighting the requirements necessary for a plankton observing system, the approach to achieve it and associated challenges. We conclude with ranked action-item recommendations for the next 10 years to move toward our vision of a holistic ocean-wide plankton observing system. Particularly, we suggest to begin with a demonstration project on a GO-SHIP line and/or a long-term observation site and expand from there, ensuring that issues associated with methods, observation tools, data analysis, quality assessment and curation are addressed early in the implementation. Global coordination is key for the success of this vision and will bring new insights on processes associated with nutrient regeneration, ocean production, fisheries and carbon sequestration.