Rahman Shaily

No Thumbnail Available
Last Name
Rahman
First Name
Shaily
ORCID
0000-0002-3912-7258

Search Results

Now showing 1 - 4 of 4
  • Article
    DSi as a tracer for submarine groundwater discharge
    (Frontiers Media, 2019-09-13) Oehler, Till ; Tamborski, Joseph ; Rahman, Shaily ; Moosdorf, Nils ; Ahrens, Janis ; Mori, Corinna ; Neuholz, René ; Schnetger, Bernhard ; Beck, Melanie
    Submarine groundwater discharge (SGD) is an important source of nutrients and metals to the coastal ocean, affects coastal ecosystems, and is gaining recognition as a relevant water resource. SGD is usually quantified using geochemical tracers such as radon or radium. However, a few studies have also used dissolved silicon (DSi) as a tracer for SGD, as DSi is usually enriched in groundwater when compared to surface waters. In this study, we discuss the potential of DSi as a tracer in SGD studies based on a literature review and two case studies from contrasting environments. In the first case study, DSi is used to calculate SGD fluxes in a tropical volcanic-carbonate karstic region (southern Java, Indonesia), where SGD is dominated by terrestrial groundwater discharge. The second case study discusses DSi as a tracer for marine SGD (i.e., recirculated seawater) in the tidal flat area of Spiekeroog (southern North Sea), where SGD is dominantly driven by tidal pumping through beach sands. Our results indicate that DSi is a useful tracer for SGD in various lithologies (e.g., karstic, volcanic, complex) to quantify terrestrial and marine SGD fluxes. DSi can also be used to trace groundwater transport processes in the sediment and the coastal aquifer. Care has to be taken that all sources and sinks of DSi are known and can be quantified or neglected. One major limitation is that DSi is used by siliceous phytoplankton and therefore limits its applicability to times of the year when primary production of siliceous phytoplankton is low. In general, DSi is a powerful tracer for SGD in many environments. We recommend that DSi should be used to complement other conventionally used tracers, such as radon or radium, to help account for their own shortcomings.
  • Article
    Reviews and syntheses: the biogeochemical cycle of silicon in the modern ocean
    (European Geosciences Union, 2021-02-18) Tréguer, Paul J. ; Sutton, Jill N. ; Brzezinski, Mark A. ; Charette, Matthew A. ; DeVries, Timothy ; Dutkiewicz, Stephanie ; Ehlert, Claudia ; Hawkings, Jon ; Leynaert, Aude ; Liu, Su Mei ; Llopis Monferrer, Natalia ; López-Acosta, María ; Maldonado, Manuel ; Rahman, Shaily ; Ran, Lihua ; Rouxel, Olivier
    The element silicon (Si) is required for the growth of silicified organisms in marine environments, such as diatoms. These organisms consume vast amounts of Si together with N, P, and C, connecting the biogeochemical cycles of these elements. Thus, understanding the Si cycle in the ocean is critical for understanding wider issues such as carbon sequestration by the ocean's biological pump. In this review, we show that recent advances in process studies indicate that total Si inputs and outputs, to and from the world ocean, are 57 % and 37 % higher, respectively, than previous estimates. We also update the total ocean silicic acid inventory value, which is about 24 % higher than previously estimated. These changes are significant, modifying factors such as the geochemical residence time of Si, which is now about 8000 years, 2 times faster than previously assumed. In addition, we present an updated value of the global annual pelagic biogenic silica production (255 Tmol Si yr−1) based on new data from 49 field studies and 18 model outputs, and we provide a first estimate of the global annual benthic biogenic silica production due to sponges (6 Tmol Si yr−1). Given these important modifications, we hypothesize that the modern ocean Si cycle is at approximately steady state with inputs =14.8(±2.6) Tmol Si yr−1 and outputs =15.6(±2.4) Tmol Si yr−1. Potential impacts of global change on the marine Si cycle are discussed.
  • Article
    Global ocean sediment composition and burial flux in the deep sea
    (American Geophysical Union, 2021-03-21) Hayes, Christopher T. ; Costa, Kassandra M. ; Anderson, Robert F. ; Calvo, Eva ; Chase, Zanna ; Demina, Ludmila L. ; Dutay, Jean-Claude ; German, Christopher R. ; Heimbürger, Lars-Eric ; Jaccard, Samuel L. ; Jacobel, Allison W. ; Kohfeld, Karen E. ; Kravchishina, Marina ; Lippold, Jörg ; Mekik, Figen ; Missiaen, Lise ; Pavia, Frank ; Paytan, Adina ; Pedrosa-Pamies, Rut ; Petrova, Mariia V. ; Rahman, Shaily ; Robinson, Laura F. ; Roy-Barman, Matthieu ; Sanchez-Vidal, Anna ; Shiller, Alan M. ; Tagliabue, Alessandro ; Tessin, Allyson C. ; van Hulten, Marco ; Zhang, Jing
    Quantitative knowledge about the burial of sedimentary components at the seafloor has wide-ranging implications in ocean science, from global climate to continental weathering. The use of 230Th-normalized fluxes reduces uncertainties that many prior studies faced by accounting for the effects of sediment redistribution by bottom currents and minimizing the impact of age model uncertainty. Here we employ a recently compiled global data set of 230Th-normalized fluxes with an updated database of seafloor surface sediment composition to derive atlases of the deep-sea burial flux of calcium carbonate, biogenic opal, total organic carbon (TOC), nonbiogenic material, iron, mercury, and excess barium (Baxs). The spatial patterns of major component burial are mainly consistent with prior work, but the new quantitative estimates allow evaluations of deep-sea budgets. Our integrated deep-sea burial fluxes are 136 Tg C/yr CaCO3, 153 Tg Si/yr opal, 20Tg C/yr TOC, 220 Mg Hg/yr, and 2.6 Tg Baxs/yr. This opal flux is roughly a factor of 2 increase over previous estimates, with important implications for the global Si cycle. Sedimentary Fe fluxes reflect a mixture of sources including lithogenic material, hydrothermal inputs and authigenic phases. The fluxes of some commonly used paleo-productivity proxies (TOC, biogenic opal, and Baxs) are not well-correlated geographically with satellite-based productivity estimates. Our new compilation of sedimentary fluxes provides detailed regional and global information, which will help refine the understanding of sediment preservation.
  • Article
    Dissolved and particulate barium distributions along the US GEOTRACES North Atlantic and East Pacific zonal transects (GA03 and GP16): global implications for the marine barium cycle
    (American Geophysical Union, 2022-05-23) Rahman, Shaily ; Shiller, Alan M. ; Anderson, Robert F. ; Charette, Matthew A. ; Hayes, Christopher T. ; Gilbert, Melissa ; Grissom, Karen ; Lam, Phoebe J. ; Ohnemus, Daniel C. ; Pavia, Frank ; Twining, Benjamin S. ; Vivancos, Sebastian M.
    Processes controlling dissolved barium (dBa) were investigated along the GEOTRACES GA03 North Atlantic and GP16 Eastern Tropical Pacific transects, which traversed similar physical and biogeochemical provinces. Dissolved Ba concentrations are lowest in surface waters (∼35–50 nmol kg−1) and increase to 70–80 and 140–150 nmol kg−1 in deep waters of the Atlantic and Pacific transects, respectively. Using water mass mixing models, we estimate conservative mixing that accounts for most of dBa variability in both transects. To examine nonconservative processes, particulate excess Ba (pBaxs) formation and dissolution rates were tracked by normalizing particulate excess 230Th activities. Th-normalized pBaxs fluxes, with barite as the likely phase, have subsurface maxima in the top 1,000 m (∼100–200 μmol m−2 year−1 average) in both basins. Barite precipitation depletes dBa within oxygen minimum zones from concentrations predicted by water mass mixing, whereas inputs from continental margins, particle dissolution in the water column, and benthic diffusive flux raise dBa above predications. Average pBaxs burial efficiencies along GA03 and GP16 are ∼37% and 17%–100%, respectively, and do not seem to be predicated on barite saturation indices in the overlying water column. Using published values, we reevaluate the global freshwater dBa river input as 6.6 ± 3.9 Gmol year−1. Estuarine mixing processes may add another 3–13 Gmol year−1. Dissolved Ba inputs from broad shallow continental margins, previously unaccounted for in global marine summaries, are substantial (∼17 Gmol year−1), exceeding terrestrial freshwater inputs. Revising river and shelf dBa inputs may help bring the marine Ba isotope budget more into balance.