Meyer-Kaiser
Kirstin S.
Meyer-Kaiser
Kirstin S.
No Thumbnail Available
Search Results
Now showing
1 - 4 of 4
-
ArticleMegabenthic standing stocks and organic carbon demand in a warming Arctic(Elsevier, 2021-06-02) Mazurkiewicz, Mikołaj ; Meyer-Kaiser, Kirstin S. ; Sweetman, Andrew K. ; Renaud, Paul E. ; Włodarska–Kowalczuk, MariaBenthic megafauna (organisms large enough to be visible on seabed photographs) are regarded as important for carbon cycling in benthic habitats. They are a food source for many predators like fish and marine mammals and may stimulate carbon mineralization in sediment by bioturbation. However, few studies address these basic characteristics of megabenthos quantitatively. This study quantifies the spatial variability in standing stock (biomass) and functioning (secondary production, respiration and carbon demand) of benthic megafauna in fjords and on the continental shelf of Svalbard. Organisms were measured from sea bottom images to assess their biomass using length-weight relationships and volumetric methods, then respiration and production were estimated with empirical artificial neural network models. Significantly higher standing stock, secondary production, respiration, and carbon demand were found in fjords categorized as ‘cold’ (as defined by water temperature, prevailing water masses and ice-cover) than in the ‘warm’ ones. Cold fjords were dominated by Echinodermata, while in warm fjords Crustacea prevailed. All megafaunal community parameters were negatively correlated with bottom temperature. It was not possible to assess specific direct impacts of temperature, and indirect effects may be more relevant to our findings. These include temperature-driven changes in primary production, ice cover and ice-algae production or predation pressure from carnivores expanding their ranges northward. The progression of climate warming may affect megafaunal communities by reducing their biomass, production, and carbon demand and have profound effects on ecosystem functioning.
-
ArticlePalau's warmest reefs harbor thermally tolerant corals that thrive across different habitats(Nature Research, 2022-12-21) Rivera, Hanny E. ; Cohen, Anne L. ; Thompson, Janelle R. ; Baums, Iliana B. ; Fox, Michael D. ; Meyer-Kaiser, Kirstin S.Ocean warming is killing corals, but heat-tolerant populations exist; if protected, they could replenish affected reefs naturally or through restoration. Palau's Rock Islands experience consistently higher temperatures and extreme heatwaves, yet their diverse coral communities bleach less than those on Palau's cooler outer reefs. Here, we combined genetic analyses, bleaching histories and growth rates of Porites cf. lobata colonies to identify thermally tolerant genotypes, map their distribution, and investigate potential growth trade-offs. We identified four genetic lineages of P. cf. lobata. On Palau's outer reefs, a thermally sensitive lineage dominates. The Rock Islands harbor two lineages with enhanced thermal tolerance; one of which shows no consistent growth trade-off and also occurs on several outer reefs. This suggests that the Rock Islands provide naturally tolerant larvae to neighboring areas. Finding and protecting such sources of thermally-tolerant corals is key to reef survival under 21century climate change.
-
ArticleDepartures from isotropy: the kinematics of a larval snail in response to food(The Company of Biologists, 2021-01-15) DiBenedetto, Michelle H. ; Meyer-Kaiser, Kirstin S. ; Torjman, Brooke ; Wheeler, Jeanette D. ; Mullineaux, Lauren S.The swimming behavior of invertebrate larvae can affect their dispersal, survival and settlement in the ocean. Modeling this behavior accurately poses unique challenges as behavior is controlled by both physiology and environmental cues. Some larvae use cilia to both swim and create feeding currents, resulting in potential trade-offs between the two functions. Food availability is naturally patchy and often occurs in shallow horizontal layers in the ocean. Also, larval swimming motions generally differ in the horizontal and vertical directions. In order to investigate behavioral response to food by ciliated larvae, we measured their behavioral anisotropy by quantifying deviations from a model based on isotropic diffusion. We hypothesized that larvae would increase horizontal swimming and decrease vertical swimming after encountering food, which could lead to aggregation at food layers. We considered Crepidula fornicata larvae, which are specifically of interest as they exhibit unsteady and variable swimming behaviors that are difficult to categorize. We tracked the larvae in still water with and without food, with a portion of the larvae starved beforehand. On average, larvae in the presence of food were observed higher in the water column, with higher swimming speeds and higher horizontal swimming velocities when compared with larvae without food. Starved larvae also exhibited higher vertical velocities in food, suggesting no aggregation behavior. Although most treatments showed strong anisotropy in larval behavior, we found that starved larvae without food exhibited approximately isotropic kinematics, indicating that behavioral anisotropy can vary with environmental history and conditions to enhance foraging success or mitigate food-poor environments.
-
ArticleShipwreck ecology: understanding the function and processes from microbes to megafauna(Oxford University Press, 2023-12-19) Paxton, Avery B. ; McGonigle, Christopher ; Damour, Melanie ; Holly, Georgia ; Caporaso, Alicia ; Campbell, Peter B. ; Meyer-Kaiser, Kirstin S. ; Hamdan, Leila J. ; Mires, Calvin H. ; Taylor, J ChristopherAn estimated three million shipwrecks exist worldwide and are recognized as cultural resources and foci of archaeological investigations. Shipwrecks also support ecological resources by providing underwater habitats that can be colonized by diverse organisms ranging from microbes to megafauna. In the present article, we review the emerging ecological subdiscipline of shipwreck ecology, which aims to understand ecological functions and processes that occur on shipwrecks. We synthesize how shipwrecks create habitat for biota across multiple trophic levels and then describe how fundamental ecological functions and processes, including succession, zonation, connectivity, energy flow, disturbance, and habitat degradation, manifest on shipwrecks. We highlight future directions in shipwreck ecology that are ripe for exploration, placing a particular emphasis on how shipwrecks may serve as experimental networks to address long-standing ecological questions.