Aluwihare Lihini I.

No Thumbnail Available
Last Name
Aluwihare
First Name
Lihini I.
ORCID

Search Results

Now showing 1 - 8 of 8
  • Article
    Divergent forms of pyroplastic: lessons learned from the M/V X-Press Pearl ship fire
    (American Chemical Society, 2022-07-29) James, Bryan D. ; de Vos, Asha ; Aluwihare, Lihini I. ; Youngs, Sarah ; Ward, Collin P. ; Michel, Anna P. M. ; Hahn, Mark E. ; Reddy, Christopher M.
    In late May 2021, the M/V X-Press Pearl container ship caught fire while anchored 18 km off the coast of Colombo, Sri Lanka and spilled upward of 70 billion pieces of plastic or “nurdles” (∼1680 tons), littering the country’s coastline. Exposure to combustion, heat, chemicals, and petroleum products led to an apparent continuum of changes from no obvious effects to pieces consistent with previous reports of melted and burned plastic (pyroplastic) found on beaches. At the middle of this continuum, nurdles were discolored but appeared to retain their prefire morphology, resembling nurdles that had been weathered in the environment. We performed a detailed investigation of the physical and surface properties of discolored nurdles collected on a beach 5 days after the ship caught fire and within 24 h of their arrival onshore. The color was the most striking trait of the plastic: white for nurdles with minimal alteration from the accident, orange for nurdles containing antioxidant degradation products formed by exposure to heat, and gray for partially combusted nurdles. Our color analyses indicate that this fraction of the plastic released from the ship was not a continuum but instead diverged into distinct groups. Fire left the gray nurdles scorched, with entrained particles and pools of melted plastic, and covered in soot, representing partial pyroplastics, a new subtype of pyroplastic. Cross sections showed that the heat- and fire-induced changes were superficial, leaving the surfaces more hydrophilic but the interior relatively untouched. These results provide timely and actionable information to responders to reevaluate cleanup end points, monitor the recurrence of these spilled nurdles, gauge short- and long-term effects of the spilled nurdles to the local ecosystem, and manage the recovery of the spill. These findings underscore partially combusted plastic (pyroplastic) as a type of plastic pollution that has yet to be fully explored despite the frequency at which plastic is burned globally.
  • Article
    Substantial oxygen consumption by aerobic nitrite oxidation in oceanic oxygen minimum zones
    (Nature Research, 2021-12-02) Beman, J. Michael ; Vargas, Sonia M. ; Wilson, Jesse M. ; Perez-Coronel, Elisabet ; Karolewski, Jennifer S. ; Vazquez, Samantha ; Yu, Angela ; Cairo, Ariadna E. ; White, Margot E. ; Koester, Irina ; Aluwihare, Lihini I. ; Wankel, Scott D.
    Oceanic oxygen minimum zones (OMZs) are globally significant sites of biogeochemical cycling where microorganisms deplete dissolved oxygen (DO) to concentrations <20 µM. Amid intense competition for DO in these metabolically challenging environments, aerobic nitrite oxidation may consume significant amounts of DO and help maintain low DO concentrations, but this remains unquantified. Using parallel measurements of oxygen consumption rates and 15N-nitrite oxidation rates applied to both water column profiles and oxygen manipulation experiments, we show that the contribution of nitrite oxidation to overall DO consumption systematically increases as DO declines below 2 µM. Nitrite oxidation can account for all DO consumption only under DO concentrations <393 nM found in and below the secondary chlorophyll maximum. These patterns are consistent across sampling stations and experiments, reflecting coupling between nitrate reduction and nitrite-oxidizing Nitrospina with high oxygen affinity (based on isotopic and omic data). Collectively our results demonstrate that nitrite oxidation plays a pivotal role in the maintenance and biogeochemical dynamics of OMZs.
  • Article
    Recent increases in water column denitrification in the seasonally suboxic bottom waters of the Santa Barbara Basin
    (American Geophysical Union, 2019-06-11) White, Margot E. ; Rafter, Patrick ; Stephens, Brandon M. ; Wankel, Scott D. ; Aluwihare, Lihini I.
    Denitrification in the anoxic sediments of the Santa Barbara Basin has been well documented in the historic and modern record, but the regulation of and frequency with which denitrification occurs in the overlying water column are less understood. Since 2004, the magnitude and speciation of redox active nitrogen species in bottom waters have changed markedly. Most notable are periods of decreased nitrate and increased nitrite concentrations. Here we examine these changes in nitrogen cycling as recorded by the stable isotopes of dissolved nitrate from 2010–2016. When compared to previous studies, our data identify an increase in water column denitrification in the bottom waters of the basin. Observations from inside the basin as well as data from the wider California Current Ecosystem implicate a long‐term trend of decreasing oxygen concentrations as the driver for these observed changes, with ramifications for local benthic communities and regional nitrogen loss.
  • Preprint
    Deciphering ocean carbon in a changing world
    ( 2016-01-13) Moran, Mary Ann ; Kujawinski, Elizabeth B. ; Stubbins, Aron ; Fatland, Rob ; Aluwihare, Lihini I. ; Buchan, Alison ; Crump, Byron C. ; Dorrestein, Pieter C. ; Dyhrman, Sonya T. ; Hess, Nancy J. ; Howe, Bill ; Longnecker, Krista ; Medeiros, Patricia M. ; Niggemann, Jutta ; Obernosterer, Ingrid ; Repeta, Daniel J. ; Waldbauer, Jacob R.
    Dissolved organic matter (DOM) in the oceans is one of the largest pools of reduced carbon on Earth, comparable in size to the atmospheric CO2 reservoir. A vast number of compounds are present in DOM and they play important roles in all major element cycles, contribute to the storage of atmospheric CO2 in the ocean, support marine ecosystems, and facilitate interactions between organisms. At the heart of the DOM cycle lie molecular-level relationships between the individual compounds in DOM and the members of the ocean microbiome that produce and consume them. In the past, these connections have eluded clear definition because of the sheer numerical complexity of both DOM molecules and microorganisms. Emerging tools in analytical chemistry, microbiology and informatics are breaking down the barriers to a fuller appreciation of these connections. Here we highlight questions being addressed using recent methodological and technological developments in those fields and consider how these advances are transforming our understanding of some of the most important reactions of the marine carbon cycle.
  • Thesis
    High molecular weight (HMW) dissolved organic matter (DOM) in seawater : chemical structure, sources and cycling
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1999-04) Aluwihare, Lihini I.
    The goal of this thesis was to use high resolution analytical techniques coupled with molecular level analyses to chemically characterize high molecular weight (> 1 k Da (HMW)) dissolved organic matter (DOM) isolated from seawater in an attempt to provide new insights in to the cycling of DOM in the ocean. While a variety of sites spanning different environments (fluvial, coastal and oceanic) and ocean basins were examined, the chemical structure of the isolated HMW DOM varied little at both the polymer and monomer levels. All samples show similar ratios of carbohydrate: acetate: lipid carbon (80±4: 10±2:9±4) indicating that these biochemicals are present within a family of related polymers. The carbohydrate fraction shows a characteristic distribution of seven major neutral monosaccharides: rhamnose, fucose, arabinose, xylose, mannose, glucose and galactose; and additionally contains Nacetylated amino sugars as seen by Nuclear Magnetic Resonance Spectroscopy (NMR). This family of compounds, consisting of a specifically linked polysaccharide backbone that is acylated at several positions, has been termed acylated polysaccharides (APS) by our laboratory. APS accounts for 50% of the carbon in HMW DOM isolated from the surface ocean and 20% of the carbon in HMW DOM isolated from the deep ocean. In order to identify a possible source for APS three species of phytoplankton, Thalassiossira weissflogii, Emiliania huxleyi and Phaeocystis, were cultured in seawater and their HMW DOM exudates examined by variety of analytical techniques. Both the T. weissflogii and E. huxleyi exudates contain compounds that resemble APS indicating that phytoplankton are indeed a source of APS to the marine environment. Furthermore, the degradation of the T. weissflogii exudate by a natural assemblage of microorganisms indicates that the component resembling APS is more resistant to microbial degradation compared to other polysaccharides present in the culture. Molecular level analyses show the distribution of monosaccharides to be conservative in surface and deep waters suggesting that APS is present throughout the water column. In order to determine the mechanism by which APS is delivered to the deep ocean the Δ14C value of APS in the deep ocean was compared to the Δ14C value of the dissolved inorganic carbon (DIC) at the same depth. If the formation of deep water is the dominant mode of transport then both the DIC and APS will have similar Δ14C values. However, if APS is injected into the deep ocean from particles or marine snow then the Δ14C value of APS will be higher than the DIC at the same depth. Our results indicate that APS in the deep Pacific Ocean carries a modem Δ14C value and is substantially enriched in 14C relative to the total HMW DOM and the DIC at that depth. Thus, particle dissolution appears to be the most important pathway for the delivery of APS to the deep ocean.
  • Article
    Refractory dissolved organic matter has similar chemical characteristics but different radiocarbon signatures with depth in the marine water column
    (American Geophysical Union, 2023-04-04) White, Margot E. ; Nguyen, Tran B. ; Koester, Irina ; Lardie Gaylord, Mary C. ; Beman, J. Michael ; Smith, Kenneth L. ; McNichol, Ann P. ; Beaupré, Steven R. ; Aluwihare, Lihini I.
    The >5,000‐year radiocarbon age (14C‐age) of much of the 630 ± 30 Pg C oceanic dissolved organic carbon (DOC) reservoir remains an enigma in the marine carbon cycle. The fact that DOC is significantly older than dissolved inorganic carbon at every depth in the ocean forms the basis of our current framing of the marine DOC cycle, where some component persists over multiple cycles of ocean mixing. As a result, 14C‐depleted, aged DOC is hypothesized to be present as a uniform reservoir with a constant 14C signature and concentration throughout the water column. However, key requirements of this model, including direct observations of DOC with similar 14C signatures in the surface and deep ocean, have never been met. Despite decades of research, the distribution of Δ14C values in marine DOC remains a mystery. Here, we applied a thermal fractionation method to compare operationally defined refractory DOC (RDOC) from different depths in the North Pacific Ocean. We found that RDOC shares chemical characteristics (as recorded by OC bond strength) throughout the water column but does not share the same 14C signature. Our results support one part of the current paradigm—that RDOC is comprised of structurally related components throughout the ocean that form a “background” reservoir. However, in contrast to the current paradigm, our results are consistent with a vertical concentration gradient and a vertical and inter‐ocean Δ14C gradient for RDOC. The observed Δ14C gradient is compatible with the potential addition of pre‐aged DOC to the upper ocean.
  • Article
    Fire and oil led to complex mixtures of PAHs on burnt and unburnt plastic during the M/V X‑Press Pearl Disaster.
    (American Chemical Society, 2023-07-12) James, Bryan D. ; Reddy, Christopher M. ; Hahn, Mark E. ; Nelson, Robert K. ; de Vos, Asha ; Aluwihare, Lihini I. ; Wade, Terry L. ; Knap, Anthony H. ; Bera, Gopal
    In May 2021, the M/V X-Press Pearl container ship burned for 2 weeks, leading to the largest maritime spill of resin pellets (nurdles). The disaster was exacerbated by the leakage of other cargo and the ship’s underway fuel. This disaster affords the unique opportunity to study a time-stamped, geolocated release of plastic under real-world conditions. Field samples collected from beaches in Sri Lanka nearest to the ship comprised nurdles exposed to heat and combustion, burnt plastic pieces (pyroplastic), and oil-plastic agglomerates (petroplastic). An unresolved question is whether the 1600+ tons of spilled and recovered plastic should be considered hazardous waste. Due to the known formation and toxicity of combustion-derived polycyclic aromatic hydrocarbons (PAHs), we measured 20 parent and 21 alkylated PAHs associated with several types of spilled plastic. The maximum PAH content of the sampled pyroplastic had the greatest amount of PAHs recorded for marine plastic debris (199,000 ng/g). In contrast, the sampled unburnt white nurdles had two orders of magnitude less PAH content. The PAH composition varied between the types of spilled plastic and presented features typical of and conflicting with petrogenic and pyrogenic sources. Nevertheless, specific markers and compositional changes for burning plastics were identified, revealing that the fire was the main source of PAHs. Eight months after the spill, the PAH contents of sampled stray nurdles and pyroplastic were reduced by more than 50%. Due to their PAH content exceeding levels allowable for plastic consumer goods, classifying burnt plastic as hazardous waste may be warranted. Following a largely successful cleanup, we recommend that the Sri Lankans re-evaluate the identification, handling, and disposal of the plastic debris collected from beaches and the potential exposure of responders and the public to PAHs from handling it. The maritime disaster underscores pyroplastic as a type of plastic pollution that has yet to be fully explored, despite the pervasiveness of intentional and unintentional burning of plastic globally.
  • Article
    Perspectives on Chemical Oceanography in the 21st century : participants of the COME ABOARD Meeting examine aspects of the field in the context of 40 years of DISCO
    (Elsevier, 2017-09-08) Fassbender, Andrea ; Palevsky, Hilary I. ; Martz, Todd R. ; Ingalls, Anitra ; Gledhill, Martha ; Fawcett, Sarah E. ; Brandes, Jay A. ; Aluwihare, Lihini I. ; COME ABOARD ; DISCO XXV
    The questions that chemical oceanographers prioritize over the coming decades, and the methods we use to address these questions, will define our field's contribution to 21st century science. In recognition of this, the U.S. National Science Foundation and National Oceanic and Atmospheric Administration galvanized a community effort (the Chemical Oceanography MEeting: A BOttom-up Approach to Research Directions, or COME ABOARD) to synthesize bottom-up perspectives on selected areas of research in Chemical Oceanography. Representing only a small subset of the community, COME ABOARD participants did not attempt to identify targeted research directions for the field. Instead, we focused on how best to foster diverse research in Chemical Oceanography, placing emphasis on the following themes: strengthening our core chemical skillset; expanding our tools through collaboration with chemists, engineers, and computer scientists; considering new roles for large programs; enhancing interface research through interdisciplinary collaboration; and expanding ocean literacy by engaging with the public. For each theme, COME ABOARD participants reflected on the present state of Chemical Oceanography, where the community hopes to go and why, and actionable pathways to get there. A unifying concept among the discussions was that dissimilar funding structures and metrics of success may be required to accommodate the various levels of readiness and stages of knowledge development found throughout our community. In addition to the science, participants of the concurrent Dissertations Symposium in Chemical Oceanography (DISCO) XXV, a meeting of recent and forthcoming Ph.D. graduates in Chemical Oceanography, provided perspectives on how our field could show leadership in addressing long-standing diversity and early-career challenges that are pervasive throughout science. Here we summarize the COME ABOARD Meeting discussions, providing a synthesis of reflections and perspectives on the field.