Gente Pascal

No Thumbnail Available
Last Name
Gente
First Name
Pascal
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Faulting and volcanism in the axial valley of the slow-spreading center of the Mariana back arc basin from Wadatsumi side-scan sonar images
    (American Geophysical Union, 2005-05-13) Deschamps, Anne ; Fujiwara, Toshiya ; Asada, Miho ; Montesi, Laurent G. J. ; Gente, Pascal
    We analyzed in detail the geology of the median valley floor of the Mariana Basin slow-spreading ridge using sea surface geophysical data and a high-resolution deep-tow side-scan sonar survey over one spreading segment. Analysis of surface magnetic data indicates highly asymmetric accretion, with the half-spreading rate on the western side of the basin being two to three times larger than on the eastern side. Surface magnetic and reflectivity data together suggest that asymmetric spreading is accomplished through eastward ridge jumps of ∼10 km of amplitude. Deep-tow backscatter data indicate along-axis variations of the volcanic processes with the emplacement of smooth and hummocky flows at the segment center and end, respectively. This variation likely relates to changes in the effusion rate due to the deepening or even disappearance of the magma chamber toward the segment end. Concerning tectonic processes, we find a power law distribution of the fractures, with an exponent of 1.74. This suggests that within the inner valley floor, fracture growth prevails over fracture nucleation and coalescence and that fractures accommodate less than 8% of the strain. According to our calculation based on a ratio of 0.02 to 0.03 between the vertical displacement and the length of faults, the amount of tectonic strain accommodated in the inner valley floor would consistently be ∼1.1–3.4%. Data also show two distinct sets of fractures. One trend is parallel to the rift direction at the segment center (∼N160°E) and perpendicular to the plate separation direction. Another set trends ∼17° oblique to this direction (∼N175°E) and is located over the eastern part of the valley, in the vicinity of a major bounding fault also trending ∼N175°E, that is, obliquely to the direction of plate motion. We modeled the stress field near a major fault that is oblique to the regional stress field associated with plate separation using a three-dimensional boundary element approach. We found that the orientation of the predicted fissuring near the oblique fault is locally rotated by ∼15° due to a flexure of the bending plate close to this fault.
  • Article
    Segmentation and eruptive activity along the East Pacific Rise at 16°N, in relation with the nearby Mathematician hotspot
    (John Wiley & Sons, 2014-11-26) Le Saout, Morgane ; Deschamps, Anne ; Soule, Samuel A. ; Gente, Pascal
    The 16°N segment of the East Pacific Rise is the most overinflated and shallowest of this fast-spreading ridge, in relation with an important magma flux due to the proximity of the Mathematician hotspot. Here, we analyze the detailed morphology of the axial dome and of the Axial Summit Trough (AST), the lava morphology, and the geometry of fissures and faults, in regard to the attributes of the magma chamber beneath and of the nearby hotspot. The data used are 1 m resolution bathymetry combined with seafloor photos and videos. At the dome summit, the AST is highly segmented by 10 third-order and fourth-order discontinuities over a distance of 30 km. Often, two contiguous and synchronous ASTs coexist. Such a configuration implies a wide (1100 m minimum) zone of diking. The existence of contiguous ASTs, their mobility, their general en echelon arrangement accommodating the bow shape of the axial dome toward the hotspot, plus the existence of a second magma lens under the western half of the summit plateau, clearly reflect the influence of the hotspot on the organization of the spreading system. The different ASTs exhibit contrasted widths and depths. We suggest that narrow ASTs reflect an intense volcanic activity that produces eruptions covering the tectonic features and partially filling the ASTs. AST widening and deepening would indicate a decrease in volcanic activity but with continued dike intrusions at the origin of abundant sets of fissures and faults that are not masked by volcanic deposits.