Jones E. Peter

No Thumbnail Available
Last Name
First Name
E. Peter

Search Results

Now showing 1 - 2 of 2
  • Article
    Freshwater composition of the waters off southeast Greenland and their link to the Arctic Ocean
    (American Geophysical Union, 2009-05-27) Sutherland, David A. ; Pickart, Robert S. ; Jones, E. Peter ; Azetsu-Scott, Kumiko ; Eert, A. Jane ; Olafsson, Jon
    The freshwater composition of waters on the southeast Greenland shelf and slope are described using a set of high-resolution transects occupied in summer 2004, which included hydrographic, velocity, nutrient, and chemical tracer measurements. The nutrient and tracer data are used to quantify the fractions of Pacific Water, sea ice melt, and meteoric water present in the upper layers of the East Greenland Current (EGC) and East Greenland Coastal Current (EGCC). The EGC/EGCC system dominates the circulation of this region and strongly influences the observed distribution of the three freshwater types. Sea ice melt and meteoric water fractions are surface intensified, reflecting their sources, and generally increase southward from Denmark Strait to Cape Farewell, as well as shoreward. Significant fractions of Pacific Water are found in the subsurface layers of the EGCC, supporting the idea that this inner shelf branch is directly linked to the EGC and thus to the Arctic Ocean. A set of historical sections is examined to investigate the variability of Pacific Water content in the EGC and EGCC from 1984 to 2004 in the vicinity of Denmark Strait. The fraction of Pacific Water increased substantially in the late 1990s and subsequently declined to low levels in 2002 and 2004, mirroring the reduction in Pacific Water content reported previously at Fram Strait. This variability is found to correlate significantly with the Arctic Oscillation index, lagged by 9 years, suggesting that the Arctic Ocean circulation patterns bring varying amounts of Pacific Water to the North Atlantic via the EGC/EGCC.
  • Preprint
    The western Arctic boundary current at 152°W : structure, variability, and transport
    ( 2008-01-16) Nikolopoulos, Anna ; Pickart, Robert S. ; Fratantoni, Paula S. ; Shimada, Koji ; Torres, Daniel J. ; Jones, E. Peter
    From August 2002 to September 2004 a high-resolution mooring array was maintained across the western Arctic boundary current in the Beaufort Sea north of Alaska. The array consisted of profiling instrumentation, providing a timeseries of vertical sections of the current. Here we present the first-year velocity measurements, with emphasis on the Pacific water component of the current. The mean flow is characterized as a bottom-intensified jet of O(15 cm s-1) directed to the east, trapped to the shelfbreak near 100 m depth. Its width scale is only 10-15 km. Seasonally the flow has distinct configurations. During summer it becomes surface-intensified as it advects buoyant Alaskan Coastal Water. In fall and winter the current often reverses (flows westward) under upwelling-favorable winds. Between the storms, as the eastward flow re-establishes, the current develops a deep extension to depths exceeding 700 m. In spring the bottom-trapped flow advects winter-transformed Pacific water emanating from the Chukchi Sea. The year-long mean volume transport of Pacific Water is 0.13±0.08 Sv to the east, which is less than 20% of the long-term mean Bering Strait inflow. This implies that most of the Pacific water entering the Arctic goes elsewhere, contrary to expected dynamics and previous modeling results. Possible reasons for this are discussed. The mean Atlantic water transport (to 800 m depth) is 0.047±0.026 Sv, also smaller than anticipated.