Feng Yanqing

No Thumbnail Available
Last Name
Feng
First Name
Yanqing
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Observational and modeling studies of oceanic responses and feedbacks to typhoons Hato and Mangkhut over the northern shelf of the South China Sea
    (Elsevier, 2021-01-01) Dong, Wenjing ; Feng, Yanqing ; Chen, Changsheng ; Wu, Zhongxiang ; Xu, Danya ; Li, Siqi ; Xu, Qichun ; Wang, Lu ; Beardsley, Robert C. ; Lin, Huichan ; Li, Ruixiang ; Chen, Junkun ; Li, Jiahui
    Meteorological and oceanic responses to Typhoons Hato and Mangkhut were captured by storm-monitoring network buoys over the northern shelf of the South China Sea. With similar shelf-traversing trajectories, these two typhoons exhibited distinctly different features in storm-induced oceanic mixing and oceanic heat transfer through the air-sea interface. A well-defined cold wake was detected underneath the storm due to a rapid drop in sea surface temperature during the Hato crossing, but not during the Mangkhut crossing. Impacts of oceanic mixing on forming a storm-produced cold wake were associated with the pre-storm condition of water stratification. In addition to oceanic mixing produced through the diffusion process by shear and buoyancy turbulence productions, the short-time scale of mixing suggested convection/overturning may play a critical role in the rapid cooling at the sea surface. The importance of convection/overturning to mixing depended on the duration of atmospheric cooling above the sea surface-the longer the atmospheric cooling, the more significant effect on mixing. Including the oceanic mixed layer (OML) in the WRF model was capable of reproducing the observed storm-induced variations of wind and air pressure, but not the air and sea surface temperatures. Process-oriented numerical experiments with the OML models supported both observational and modeling findings. To simulate the storm-induced mixing in a coupled atmospheric and oceanic model, we need to improve the physics of vertical mixing with non-hydrostatic convection/overturning. Warming over the shelf is projected to have a more energetic influence on future typhoon intensities and trajectories.
  • Article
    Observed wintertime tidal and subtidal currents over the continental shelf in the northern South China Sea
    (John Wiley & Sons, 2014-08-19) Li, Ruixiang ; Chen, Changsheng ; Xia, Huayong ; Beardsley, Robert C. ; Shi, Maochong ; Lai, Zhigang ; Lin, Huichan ; Feng, Yanqing ; Liu, Changjian ; Xu, Qichun ; Ding, Yang ; Zhang, Yu
    Synthesis analyses were performed to examine characteristics of tidal and subtidal currents at eight mooring sites deployed over the northern South China Sea (NSCS) continental shelf in the 2006–2007 and 2009–2010 winters. Rotary spectra and harmonic analysis results showed that observed tidal currents in the NSCS were dominated by baroclinic diurnal tides with phases varying both vertically and horizontally. This feature was supported by the CC-FVCOM results, which demonstrated that the diurnal tidal flow over this shelf was characterized by baroclinic Kelvin waves with vertical phase differences varying in different flow zones. The northeasterly wind-induced southwestward flow prevailed over the NSCS shelf during winter, with episodic appearances of mesoscale eddies and a bottom-intensified buoyancy-driven slope water intrusion. The moored current records captured a warm-core anticyclonic eddy, which originated from the southwestern coast of Taiwan and propagated southwestward along the slope consistent with a combination of β-plane and topographic Rossby waves. The eddy was surface-intensified with a swirl speed of >50 cm/s and a vertical scale of ∼400 m. In absence of eddies and onshore deep slope water intrusion, the observed southwestward flow was highly coherent with the northeasterly wind stress. Observations did not support the existence of the permanent wintertime South China Sea Warm Current (SCSWC). The definition of SCSWC, which was based mainly on thermal wind calculations with assumed level of no motion at the bottom, needs to be interpreted with caution since the observed circulation over the NSCS shelf in winter included both barotropic and baroclinic components.