Poetsch Ansgar

No Thumbnail Available
Last Name
Poetsch
First Name
Ansgar
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    High density and ligand affinity confer ultrasensitive signal detection by a guanylyl cyclase chemoreceptor
    (Rockefeller University Press, 2014-08-18) Pichlo, Magdalena ; Bungert-Plumke, Stefanie ; Weyand, Ingo ; Seifert, Reinhard ; Bonigk, Wolfgang ; Strunker, Timo ; Kashikar, Nachiket D. ; Goodwin, Normann ; Muller, Astrid ; Pelzer, Patric ; Van, Qui ; Enderlein, Jorg ; Klemm, Clementine ; Krause, Eberhard ; Trotschel, Christian ; Poetsch, Ansgar ; Kremmer, Elisabeth ; Kaupp, U. Benjamin
    Guanylyl cyclases (GCs), which synthesize the messenger cyclic guanosine 3′,5′-monophosphate, control several sensory functions, such as phototransduction, chemosensation, and thermosensation, in many species from worms to mammals. The GC chemoreceptor in sea urchin sperm can decode chemoattractant concentrations with single-molecule sensitivity. The molecular and cellular underpinnings of such ultrasensitivity are not known for any eukaryotic chemoreceptor. In this paper, we show that an exquisitely high density of 3 × 105 GC chemoreceptors and subnanomolar ligand affinity provide a high ligand-capture efficacy and render sperm perfect absorbers. The GC activity is terminated within 150 ms by dephosphorylation steps of the receptor, which provides a means for precise control of the GC lifetime and which reduces “molecule noise.” Compared with other ultrasensitive sensory systems, the 10-fold signal amplification by the GC receptor is surprisingly low. The hallmarks of this signaling mechanism provide a blueprint for chemical sensing in small compartments, such as olfactory cilia, insect antennae, or even synaptic boutons.
  • Article
    Absolute proteomic quantification reveals design principles of sperm flagellar chemosensation
    (EMBO Press, 2019-12-27) Trotschel, Christian ; Hamzeh, Hussein ; Alvarez, Luis ; Pascal, René ; Lavryk, Fedir ; Bönigk, Wolfgang ; Körschen, Heinz Gerd ; Müller, Astrid ; Poetsch, Ansgar ; Rennhack, Andreas ; Gui, Long ; Nicastro, Daniela ; Strünker, Timo ; Seifert, Reinhard ; Kaupp, U. Benjamin
    Cilia serve as cellular antennae that translate sensory information into physiological responses. In the sperm flagellum, a single chemoattractant molecule can trigger a Ca2+ rise that controls motility. The mechanisms underlying such ultra‐sensitivity are ill‐defined. Here, we determine by mass spectrometry the copy number of nineteen chemosensory signaling proteins in sperm flagella from the sea urchin Arbacia punctulata. Proteins are up to 1,000‐fold more abundant than the free cellular messengers cAMP, cGMP, H+, and Ca2+. Opto‐chemical techniques show that high protein concentrations kinetically compartmentalize the flagellum: Within milliseconds, cGMP is relayed from the receptor guanylate cyclase to a cGMP‐gated channel that serves as a perfect chemo‐electrical transducer. cGMP is rapidly hydrolyzed, possibly via “substrate channeling” from the channel to the phosphodiesterase PDE5. The channel/PDE5 tandem encodes cGMP turnover rates rather than concentrations. The rate‐detection mechanism allows continuous stimulus sampling over a wide dynamic range. The textbook notion of signal amplification—few enzyme molecules process many messenger molecules—does not hold for sperm flagella. Instead, high protein concentrations ascertain messenger detection. Similar mechanisms may occur in other small compartments like primary cilia or dendritic spines.