Anthony
Robert E.
Anthony
Robert E.
No Thumbnail Available
Search Results
Now showing
1 - 3 of 3
-
ArticleNear-surface environmentally forced changes in the Ross Ice Shelf observed with ambient seismic noise(John Wiley & Sons, 2018-10-16) Chaput, Julien ; Aster, Richard C. ; McGrath, Daniel ; Baker, Michael G. ; Anthony, Robert E. ; Gerstoft, Peter ; Bromirski, Peter D. ; Nyblade, Andrew A. ; Stephen, Ralph A. ; Wiens, Douglas A. ; Das, Sarah B. ; Stevens, Laura A.Continuous seismic observations across the Ross Ice Shelf reveal ubiquitous ambient resonances at frequencies >5 Hz. These firn‐trapped surface wave signals arise through wind and snow bedform interactions coupled with very low velocity structures. Progressive and long‐term spectral changes are associated with surface snow redistribution by wind and with a January 2016 regional melt event. Modeling demonstrates high spectral sensitivity to near‐surface (top several meters) elastic parameters. We propose that spectral peak changes arise from surface snow redistribution in wind events and to velocity drops reflecting snow lattice weakening near 0°C for the melt event. Percolation‐related refrozen layers and layer thinning may also contribute to long‐term spectral changes after the melt event. Single‐station observations are inverted for elastic structure for multiple stations across the ice shelf. High‐frequency ambient noise seismology presents opportunities for continuous assessment of near‐surface ice shelf or other firn environments.
-
ArticleSeasonal and spatial variations in the ocean-coupled ambient wavefield of the Ross Ice Shelf(Cambridge University Press, 2019-09-30) Baker, Michael G. ; Aster, Richard C. ; Anthony, Robert E. ; Chaput, Julien ; Wiens, Douglas A. ; Nyblade, Andrew A. ; Bromirski, Peter D. ; Gerstoft, Peter ; Stephen, Ralph A.The Ross Ice Shelf (RIS) is host to a broadband, multimode seismic wavefield that is excited in response to atmospheric, oceanic and solid Earth source processes. A 34-station broadband seismographic network installed on the RIS from late 2014 through early 2017 produced continuous vibrational observations of Earth's largest ice shelf at both floating and grounded locations. We characterize temporal and spatial variations in broadband ambient wavefield power, with a focus on period bands associated with primary (10–20 s) and secondary (5–10 s) microseism signals, and an oceanic source process near the ice front (0.4–4.0 s). Horizontal component signals on floating stations overwhelmingly reflect oceanic excitations year-round due to near-complete isolation from solid Earth shear waves. The spectrum at all periods is shown to be strongly modulated by the concentration of sea ice near the ice shelf front. Contiguous and extensive sea ice damps ocean wave coupling sufficiently so that wintertime background levels can approach or surpass those of land-sited stations in Antarctica.
-
ArticleIce shelf structure derived from dispersion curve analysis of ambient seismic noise, Ross Ice Shelf, Antarctica(Oxford University Press, 2016-02-16) Diez, Anja ; Bromirski, Peter D. ; Gerstoft, Peter ; Stephen, Ralph A. ; Anthony, Robert E. ; Aster, Richard C. ; Cai, Chen ; Nyblade, Andrew A. ; Wiens, Douglas A.An L-configured, three-component short period seismic array was deployed on the Ross Ice Shelf, Antarctica during November 2014. Polarization analysis of ambient noise data from these stations shows linearly polarized waves for frequency bands between 0.2 and 2 Hz. A spectral peak at about 1.6 Hz is interpreted as the resonance frequency of the water column and is used to estimate the water layer thickness below the ice shelf. The frequency band from 4 to 18 Hz is dominated by Rayleigh and Love waves propagating from the north that, based on daily temporal variations, we conclude were generated by field camp activity. Frequency–slowness plots were calculated using beamforming. Resulting Love and Rayleigh wave dispersion curves were inverted for the shear wave velocity profile within the firn and ice to ∼150 m depth. The derived density profile allows estimation of the pore close-off depth and the firn–air content thickness. Separate inversions of Rayleigh and Love wave dispersion curves give different shear wave velocity profiles within the firn. We attribute this difference to an effective anisotropy due to fine layering. The layered structure of firn, ice, water and the seafloor results in a characteristic dispersion curve below 7 Hz. Forward modelling the observed Rayleigh wave dispersion curves using representative firn, ice, water and sediment structures indicates that Rayleigh waves are observed when wavelengths are long enough to span the distance from the ice shelf surface to the seafloor. The forward modelling shows that analysis of seismic data from an ice shelf provides the possibility of resolving ice shelf thickness, water column thickness and the physical properties of the ice shelf and underlying seafloor using passive-source seismic data.