Hammar Terence R.

No Thumbnail Available
Last Name
First Name
Terence R.

Search Results

Now showing 1 - 6 of 6
  • Technical Report
    Design and operation of automated ice-tethered profilers for real-time seawater observations in the polar oceans
    (Woods Hole Oceanographic Institution, 2006-06) Krishfield, Richard A. ; Doherty, Kenneth W. ; Frye, Daniel E. ; Hammar, Terence R. ; Kemp, John N. ; Peters, Donald B. ; Proshutinsky, Andrey ; Toole, John M. ; von der Heydt, Keith
    An automated, easily-deployed Ice-Tethered Profiler (ITP) has been developed for deployment on perennial sea ice in polar oceans to measure changes in upper ocean temperature and salinity in all seasons. The ITP system consists of three components: a surface instrument that sits atop an ice floe, a weighted, plastic-jacketed wire-rope tether of arbitrary length (up to 800 m) suspended from the surface instrument, and an instrumented underwater unit that profiles up and down the wire tether. The profiling underwater unit is similar in shape and dimension to an ARGO float except that the float's variable-buoyancy system is replaced with a traction drive unit. Deployment of ITPs may be conducted either from ice caps or icebreakers, utilizing a self contained tripod/winch system that requires no power. Careful selection of an appropriate multiyear ice floe is needed to prolong the lifetime of the system (up to 3 years depending on the profiling schedule). Shortly after deployment, each ITP begins profiling the water column at its programmed sampling interval. After each acquired temperature and salinity profile, the underwater unit (PROCON) transfers the data and engineering files using an inductive modem to the surface controller (SURFCON). SURFCON also accumulates battery voltages, buoy temperature, and locations from GPS at specified intervals in status files, and queues that information for transmission at the start of each new day. At frequent intervals, an Iridium satellite transceiver in the surface package calls and transmits queued status and CTD data files onto a WHOI logger computer, which are subsequently processed and displayed in near-real time at http://www.whoi.edu/itp. In 2004 and 2005, three ITP prototypes were deployed in the Arctic Ocean. Each system was programmed with accelerated sampling schedules of multiple one-way traverses per day between 10 and 750-760 m depth in order to quickly evaluate endurance and component fatigue. Two of the ITPs are continuing to function after more than 10 months and 1200 profiles. Larger motor currents are observed at times of fast ice floe motion when larger wire angles develop and drag forces on the profiler are increased. The CTD profile data so far obtained document interesting spatial variations in the major water masses of the Beaufort Gyre, show the double-diffusive thermohaline staircase that lies above the warm, salty Atlantic layer, and many mesoscale eddys. Deployed together with CRREL Ice Mass Balance (IMB) buoys, these ITP systems also operate as part of an Ice Based Observatory (IBO). Data returned from an array of IBOs within an Arctic Observing Network will provide valuable real time observations, support studies of ocean processes, and facilitate numerical model initialization and validation.
  • Article
    Development and assessment of a new dermal attachment for short-term tagging studies of baleen whales
    (John Wiley & Sons, 2014-12-18) Baumgartner, Mark F. ; Hammar, Terence R. ; Robbins, Jooke
    Current studies of fine-scale baleen whale diving and foraging behaviour rely on archival suction cup tags that remain attached over time scales of hours. However, skin irregularities can make suction cup attachment unreliable, and traditional pole deployment of suction cup tags is challenging in moderate sea conditions or when whales are evasive. We developed a new tag attachment to overcome these limitations. The attachment features a short (6·5–7·5 cm) needle that anchors in the whale's dermis (epidermis and blubber) to which a free-floating tag is attached via a severable tethered link. The needle, tag and a detachable ‘carrier rocket’ with fletching are fitted together to form a projectile that can be deployed at distances of up to 20 m using a compressed-air launcher. A corrosive release mechanism allows the tag to separate from the needle after a specified period of time so that the tag can be recovered. The dermal attachment was evaluated during a study of humpback whales (Megaptera novaeangliae) in the Gulf of Maine and then subsequently deployed on bowhead whales (Balaena mysticetus) near Barrow, Alaska. Monitoring of tagged humpback whales indicated that the needle was shed several days after deployment, the attachment site healed shortly thereafter, and there were no discernible behavioural or health effects over time scales of days to months after tagging. Bowhead whales showed little immediate reaction to tagging; the most common response was a prolonged dive right after tag deployment. On average, respiration rates of tagged bowhead whales were elevated after tag attachment, but returned to the same rate as undisturbed bowheads within 1–1·5 h. When compared to suction cups, the dermal anchor provided a more reliable attachment and it can be applied from greater distances and in rougher sea conditions; it is therefore a useful alternative in circumstances where suction cup tags cannot be easily deployed.
  • Article
    A differential pressure instrument with wireless telemetry for in-situ measurement of fluid flow across sediment-water boundaries
    (Molecular Diversity Preservation International, 2009-01-09) Gardner, Alan T. ; Karam, Hanan N. ; Mulligan, Ann E. ; Harvey, Charles F. ; Hammar, Terence R. ; Hemond, Harold F.
    An instrument has been built to carry out continuous in-situ measurement of small differences in water pressure, conductivity and temperature, in natural surface water and groundwater systems. A low-cost data telemetry system provides data on shore in real time if desired. The immediate purpose of measurements by this device is to continuously infer fluxes of water across the sediment-water interface in a complex estuarine system; however, direct application to assessment of sediment-water fluxes in rivers, lakes, and other systems is also possible. Key objectives of the design include both low cost, and accuracy of the order of ±0.5 mm H2O in measured head difference between the instrument’s two pressure ports. These objectives have been met, although a revision to the design of one component was found to be necessary. Deployments of up to nine months, and wireless range in excess of 300 m have been demonstrated.
  • Technical Report
    A large-volume, deep-sea submersible pumping system
    (Woods Hole Oceanographic Institution, 1989-11) Sachs, Peter L. ; Hammar, Terence R. ; Bacon, Michael P.
    Eight self-contained, in-situ pumps have been used effectively and routinely by our group for the past six years to collect both particulate and dissolved phases from large volumes of sea water. Multiple pumps are rapidly and easily deployed on the same wire, to any ocean depth, in almost any weather. Each is capable of drawing up to 200 liters per hour through four large Nuclepore™ filters, then through three cartridge filters. Pumping is controlled by a Sharp™ pocket computer suitably interfaced with the pump motor and flow meter. Endurance is about 15 hours. Total flow and flow rate are recorded, respectively, by a mechanical flow meter and the computer.
  • Article
    Protocols for calibrating multibeam sonar
    (Acoustical Society of America, 2005-04) Foote, Kenneth G. ; Chu, Dezhang ; Hammar, Terence R. ; Baldwin, Kenneth C. ; Mayer, Larry A. ; Hufnagle, Lawrence C. ; Jech, J. Michael
    Development of protocols for calibrating multibeam sonar by means of the standard-target method is documented. Particular systems used in the development work included three that provide the water-column signals, namely the SIMRAD SM2000/90- and 200-kHz sonars and RESON SeaBat 8101 sonar, with operating frequency of 240 kHz. Two facilities were instrumented specifically for the work: a sea well at the Woods Hole Oceanographic Institution and a large, indoor freshwater tank at the University of New Hampshire. Methods for measuring the transfer characteristics of each sonar, with transducers attached, are described and illustrated with measurement results. The principal results, however, are the protocols themselves. These are elaborated for positioning the target, choosing the receiver gain function, quantifying the system stability, mapping the directionality in the plane of the receiving array and in the plane normal to the central axis, measuring the directionality of individual beams, and measuring the nearfield response. General preparations for calibrating multibeam sonars and a method for measuring the receiver response electronically are outlined. Advantages of multibeam sonar calibration and outstanding problems, such as that of validation of the performance of multibeam sonars as configured for use, are mentioned.
  • Technical Report
    A modified wire clamp system for thirty-liter Niskin bottles
    (Woods Hole Oceanographic Institution, 1988-11) Hammar, Terence R. ; Sachs, Peter L. ; Bacon, Michael P.
    A modified clamping system for 30-liter Niskin bottles, consisting of a wire stop, a socket block, and a toggle clamp, has been designed and has been tested at sea. The modified system makes deployment and recovery of the Niskin bottles considerably easier than it is with the standard clamps .