Dsouza Melissa

No Thumbnail Available
Last Name
Dsouza
First Name
Melissa
ORCID

Search Results

Now showing 1 - 3 of 3
  • Preprint
    Soil bacterial diversity is associated with human population density in urban greenspaces
    ( 2018-04) Wang, Haitao ; Cheng, Minying ; Dsouza, Melissa ; Weisenhorn, Pamela B. ; Zheng, Tianling ; Gilbert, Jack A.
    Urban greenspaces provide extensive ecosystem services, including pollutant remediation, water management, carbon maintenance, and nutrient cycling. However, while the urban soil microbiota underpin these services, we still have limited understanding of the factors that influence their distribution. We characterized soil bacterial communities from turf-grasses associated with urban parks, streets and residential sites across a major urban environment, including a gradient of human population density. Bacterial diversity was significantly positively correlated with the population density; and species diversity was greater in park and street soils, compared to residential soils. Population density and greenspace type also led to significant differences in the microbial community composition that was also significantly correlated with soil pH, moisture and texture. Co-occurrence network analysis revealed that microbial guilds in urban soils were well correlated. Abundant soil microbes in high density population areas had fewer interactions, while abundant bacteria in high moisture soils had more interactions. These results indicate the significant influence of changes in urban demographics and land-use on soil microbial communities. As urbanization is rapidly growing across the planet, it is important to improve our understanding of the consequences of urban zoning on the soil microbiota.
  • Article
    Distinct biogeographic patterns for archaea, bacteria, and fungi along the vegetation gradient at the continental scale in Eastern China
    (American Society for Microbiology, 2017-02-07) Ma, Bin ; Dai, Zhongmin ; Wang, Haizhen ; Dsouza, Melissa ; Liu, Xingmei ; He, Yan ; Wu, Jianjun ; Rodrigues, Jorge L. M. ; Gilbert, Jack A. ; Brookes, Philip C. ; Xu, Jianming
    The natural forest ecosystem in Eastern China, from tropical forest to boreal forest, has declined due to cropland development during the last 300 years, yet little is known about the historical biogeographic patterns and driving processes for the major domains of microorganisms along this continental-scale natural vegetation gradient. We predicted the biogeographic patterns of soil archaeal, bacterial, and fungal communities across 110 natural forest sites along a transect across four vegetation zones in Eastern China. The distance decay relationships demonstrated the distinct biogeographic patterns of archaeal, bacterial, and fungal communities. While historical processes mainly influenced bacterial community variations, spatially autocorrelated environmental variables mainly influenced the fungal community. Archaea did not display a distance decay pattern along the vegetation gradient. Bacterial community diversity and structure were correlated with the ratio of acid oxalate-soluble Fe to free Fe oxides (Feo/Fed ratio). Fungal community diversity and structure were influenced by dissolved organic carbon (DOC) and free aluminum (Ald), respectively. The role of these environmental variables was confirmed by the correlations between dominant operational taxonomic units (OTUs) and edaphic variables. However, most of the dominant OTUs were not correlated with the major driving variables for the entire communities. These results demonstrate that soil archaea, bacteria, and fungi have different biogeographic patterns and driving processes along this continental-scale natural vegetation gradient, implying different community assembly mechanisms and ecological functions for archaea, bacteria, and fungi in soil ecosystems.
  • Article
    Network-guided genomic and metagenomic analysis of the faecal microbiota of the critically endangered kakapo
    (Nature Publishing Group, 2018-05-25) Waite, David W. ; Dsouza, Melissa ; Sekiguchi, Yuji ; Hugenholtz, Philip ; Taylor, Michael W.
    The kakapo is a critically endangered, herbivorous parrot endemic to New Zealand. The kakapo hindgut hosts a dense microbial community of low taxonomic diversity, typically dominated by Escherichia fergusonii, and has proven to be a remarkably stable ecosystem, displaying little variation in core membership over years of study. To elucidate mechanisms underlying this robustness, we performed 16S rRNA gene-based co-occurrence network analysis to identify potential interactions between E. fergusonii and the wider bacterial community. Genomic and metagenomic sequencing were employed to facilitate interpretation of potential interactions observed in the network. E. fergusonii maintained very few correlations with other members of the microbiota, and isolates possessed genes for the generation of energy from a wide range of carbohydrate sources, including plant fibres such as cellulose. We surmise that this dominant microorganism is abundant not due to ecological interaction with other members of the microbiota, but its ability to metabolise a wide range of nutrients in the gut. This research represents the first concerted effort to understand the functional roles of the kakapo microbiota, and leverages metagenomic data to contextualise co-occurrence patterns. By combining these two techniques we provide a means for studying the diversity-stability hypothesis in the context of bacterial ecosystems.