Barrett-Lennard
Lance G.
Barrett-Lennard
Lance G.
No Thumbnail Available
Search Results
Now showing
1 - 3 of 3
-
ArticleCulture and competition in killer whales (abstract only)(IAMSLIC, 2001) Barrett-Lennard, Lance G.
-
ArticleExtensive core microbiome in drone-captured whale blow supports a framework for health monitoring(American Society for Microbiology, 2017-10-10) Apprill, Amy ; Miller, Carolyn A. ; Moore, Michael J. ; Durban, John W. ; Fearnbach, Holly ; Barrett-Lennard, Lance G.The pulmonary system is a common site for bacterial infections in cetaceans, but very little is known about their respiratory microbiome. We used a small, unmanned hexacopter to collect exhaled breath condensate (blow) from two geographically distinct populations of apparently healthy humpback whales (Megaptera novaeangliae), sampled in the Massachusetts coastal waters off Cape Cod (n = 17) and coastal waters around Vancouver Island (n = 9). Bacterial and archaeal small-subunit rRNA genes were amplified and sequenced from blow samples, including many of sparse volume, as well as seawater and other controls, to characterize the associated microbial community. The blow microbiomes were distinct from the seawater microbiomes and included 25 phylogenetically diverse bacteria common to all sampled whales. This core assemblage comprised on average 36% of the microbiome, making it one of the more consistent animal microbiomes studied to date. The closest phylogenetic relatives of 20 of these core microbes were previously detected in marine mammals, suggesting that this core microbiome assemblage is specialized for marine mammals and may indicate a healthy, noninfected pulmonary system. Pathogen screening was conducted on the microbiomes at the genus level, which showed that all blow and few seawater microbiomes contained relatives of bacterial pathogens; no known cetacean respiratory pathogens were detected in the blow. Overall, the discovery of a shared large core microbiome in humpback whales is an important advancement for health and disease monitoring of this species and of other large whales.
-
ArticleKiller whales and marine mammal trends in the North Pacific : a re-examination of evidence for sequential megafauna collapse and the prey-switching hypothesis(Blackwell, 2007-10-26) Wade, Paul R. ; Burkanov, Vladimir N. ; Dahlheim, Marilyn E. ; Friday, Nancy A. ; Fritz, Lowell W. ; Loughlin, Thomas R. ; Mizroch, Sally A. ; Muto, Marcia M. ; Rice, Dale W. ; Barrett-Lennard, Lance G. ; Black, Nancy A. ; Burdin, Alexander M. ; Calambokidis, John ; Cerchio, Salvatore ; Ford, John K. B. ; Jacobsen, Jeff K. ; Matkin, Craig O. ; Matkin, Dena R. ; Mehta, Amee V. ; Small, Robert J. ; Straley, Janice M. ; McCluskey, Shannon M. ; VanBlaricom, Glenn R.Springer et al. (2003) contend that sequential declines occurred in North Pacific populations of harbor and fur seals, Steller sea lions, and sea otters. They hypothesize that these were due to increased predation by killer whales, when industrial whaling's removal of large whales as a supposed primary food source precipitated a prey switch. Using a regional approach, we reexamined whale catch data, killer whale predation observations, and the current biomass and trends of potential prey, and found little support for the prey-switching hypothesis. Large whale biomass in the Bering Sea did not decline as much as suggested by Springer et al., and much of the reduction occurred 50–100 yr ago, well before the declines of pinnipeds and sea otters began; thus, the need to switch prey starting in the 1970s is doubtful. With the sole exception that the sea otter decline followed the decline of pinnipeds, the reported declines were not in fact sequential. Given this, it is unlikely that a sequential megafaunal collapse from whales to sea otters occurred. The spatial and temporal patterns of pinniped and sea otter population trends are more complex than Springer et al. suggest, and are often inconsistent with their hypothesis. Populations remained stable or increased in many areas, despite extensive historical whaling and high killer whale abundance. Furthermore, observed killer whale predation has largely involved pinnipeds and small cetaceans; there is little evidence that large whales were ever a major prey item in high latitudes. Small cetaceans (ignored by Springer et al.) were likely abundant throughout the period. Overall, we suggest that the Springer et al. hypothesis represents a misleading and simplistic view of events and trophic relationships within this complex marine ecosystem.