Little Shawna N.

No Thumbnail Available
Last Name
Little
First Name
Shawna N.
ORCID

Search Results

Now showing 1 - 3 of 3
  • Article
    Low-frequency storminess signal at Bermuda linked to cooling events in the North Atlantic region
    (John Wiley & Sons, 2015-02-18) van Hengstum, Peter J. ; Donnelly, Jeffrey P. ; Kingston, Andrew W. ; Williams, Bruce E. ; Scott, David B. ; Reinhardt, Eduard G. ; Little, Shawna N. ; Patterson, William P.
    North Atlantic climate archives provide evidence for increased storm activity during the Little Ice Age (150 to 600 calibrated years (cal years) B.P.) and centered at 1700 and 3000 cal years B.P., typically in centennial-scale sedimentary records. Meteorological (tropical versus extratropical storms) and climate forcings of this signal remain poorly understood, although variability in the North Atlantic Oscillation (NAO) or Atlantic Meridional Overturning Circulation (AMOC) are frequently hypothesized to be involved. Here we present records of late Holocene storminess and coastal temperature change from a Bermudian submarine cave that is hydrographically circulated with the coastal ocean. Thermal variability in the cave is documented by stable oxygen isotope values of cave benthic foraminifera, which document a close linkage between regional temperature change and NAO phasing during the late Holocene. However, erosion of terrestrial sediment into the submarine cave provides a “storminess signal” that correlates with higher-latitude storminess archives and broader North Atlantic cooling events. Understanding the driver of this storminess signal will require higher-resolution storm records to disentangle the contribution of tropical versus extratropical cyclones and a better understanding of cyclone activity during hemispheric cooling periods. Most importantly, however, the signal in Bermuda appears more closely correlated with proxy-based evidence for subtle AMOC reductions than NAO phasing.
  • Article
    Unique habitat for benthic foraminifera in subtidal blue holes on carbonate platforms
    (Frontiers Media, 2021-12-22) Little, Shawna N. ; van Hengstum, Peter J. ; Beddows, Patricia A. ; Donnelly, Jeffrey P. ; Winkler, Tyler S. ; Albury, Nancy A.
    Dissolution of carbonate platforms, like The Bahamas, throughout Quaternary sea-level oscillations have created mature karst landscapes that can include sinkholes and off-shore blue holes. These karst features are flooded by saline oceanic waters and meteoric-influenced groundwaters, which creates unique groundwater environments and ecosystems. Little is known about the modern benthic meiofauna, like foraminifera, in these environments or how internal hydrographic characteristics of salinity, dissolved oxygen, or pH may influence benthic habitat viability. Here we compare the total benthic foraminiferal distributions in sediment-water interface samples collected from <2 m water depth on the carbonate tidal flats, and the two subtidal blue holes Freshwater River Blue Hole and Meredith’s Blue Hole, on the leeward margin of Great Abaco Island, The Bahamas. All samples are dominated by miliolid foraminifera (i.e., Quinqueloculina and Triloculina), yet notable differences emerge in the secondary taxa between these two environments that allows identification of two assemblages: a Carbonate Tidal Flats Assemblage (CTFA) vs. a Blue Hole Assemblage (BHA). The CTFA includes abundant common shallow-water lagoon foraminifera (e.g., Peneroplis, Rosalina, Rotorbis), while the BHA has higher proportions of foraminifera that are known to tolerate stressful environmental conditions of brackish and dysoxic waters elsewhere (e.g., Pseudoeponides, Cribroelphidium, Ammonia). We also observe how the hydrographic differences between subtidal blue holes can promote different benthic habitats for foraminifera, and this is observed through differences in both agglutinated and hyaline fauna. The unique hydrographic conditions in subtidal blue holes make them great laboratories for assessing the response of benthic foraminiferal communities to extreme environmental conditions (e.g., low pH, dysoxia).
  • Article
    Northeast Yucatan hurricane activity during the Maya Classic and Postclassic periods
    (Nature Research, 2022-11-22) Sullivan, Richard M. ; van Hengstum, Peter J. ; Donnelly, Jeffrey P. ; Tamalavage, Anne E. ; Winkler, Tyler S. ; Little, Shawna N. ; Mejia-Ortiz, Luis ; Reinhardt, Eduard G. ; Meacham, Sam ; Schumacher, Courtney ; Korty, Robert
    The collapse of the Maya civilization in the late 1st/early 2nd millennium CE has been attributed to multiple internal and external causes including overpopulation, increased warfare, and environmental deterioration. Yet the role hurricanes may have played in the fracturing of Maya socio-political networks, site abandonment, and cultural reconfiguration remains unexplored. Here we present a 2200 yearlong hurricane record developed from sediment recovered from a flooded cenote on the northeastern Yucatan peninsula. The sediment archive contains fine grain autogenic carbonate interspersed with anomalous deposits of coarse carbonate material that we interpret as evidence of local hurricane activity. This interpretation is supported by the correlation between the multi-decadal distribution of recent coarse beds and the temporal distribution of modern regional landfalling storms. In total, this record allows us to reconstruct the variable hurricane conditions impacting the northern lowland Maya during the Late Preclassic, Classic, and Postclassic Periods. Strikingly, persistent above-average hurricane frequency between ~ 700 and 1450 CE encompasses the Maya Terminal Classic Phase, the declines of Chichén Itza, Cobá, and subsequent rise and fall of the Mayapán Confederacy. This suggests that hurricanes may have posed an additional environmental stressor necessary of consideration when examining the Postclassic transformation of northern Maya polities. Author Correction: https://doi.org/10.1038/s41598-023-28718-6