Nienhuis Jaap H.

No Thumbnail Available
Last Name
Nienhuis
First Name
Jaap H.
ORCID

Search Results

Now showing 1 - 8 of 8
  • Article
    Large-scale coastal and fluvial models constrain the late Holocene evolution of the Ebro Delta
    (Copernicus Publications on behalf of the European Geosciences Union, 2017-09-25) Nienhuis, Jaap H. ; Ashton, Andrew D. ; Kettner, Albert J. ; Giosan, Liviu
    The distinctive plan-view shape of the Ebro Delta coast reveals a rich morphologic history. The degree to which the form and depositional history of the Ebro and other deltas represent autogenic (internal) dynamics or allogenic (external) forcing remains a prominent challenge for paleo-environmental reconstructions. Here we use simple coastal and fluvial morphodynamic models to quantify paleo-environmental changes affecting the Ebro Delta over the late Holocene. Our findings show that these models are able to broadly reproduce the Ebro Delta morphology, with simple fluvial and wave climate histories. Based on numerical model experiments and the preserved and modern shape of the Ebro Delta plain, we estimate that a phase of rapid shoreline progradation began approximately 2100 years BP, requiring approximately a doubling in coarse-grained fluvial sediment supply to the delta. River profile simulations suggest that an instantaneous and sustained increase in coarse-grained sediment supply to the delta requires a combined increase in both flood discharge and sediment supply from the drainage basin. The persistence of rapid delta progradation throughout the last 2100 years suggests an anthropogenic control on sediment supply and flood intensity. Using proxy records of the North Atlantic Oscillation, we do not find evidence that changes in wave climate aided this delta expansion. Our findings highlight how scenario-based investigations of deltaic systems using simple models can assist first-order quantitative paleo-environmental reconstructions, elucidating the effects of past human influence and climate change, and allowing a better understanding of the future of deltaic landforms.
  • Article
    Wave reworking of abandoned deltas
    (John Wiley & Sons, 2013-11-19) Nienhuis, Jaap H. ; Ashton, Andrew D. ; Roos, Pieter C. ; Hulscher, Suzanne J. M. H. ; Giosan, Liviu
    River deltas and individual delta lobes frequently face reduction of sediment supply, either from the geologic process of river avulsion or, more recently, due to human activities such as river damming. Using a process-based shoreline evolution model, we investigate wave reworking of delta shorelines after fluvial input elimination. Model results suggest that littoral sediment transport can result in four characteristic modes of delta abandonment, ranging from diffusional smoothing of the delta (or delta lobe) to the development of recurved spits. A straightforward analysis of delta shape and wave characteristics provides a framework for predicting the mode of delta abandonment. The observed morphologies of historically abandoned delta lobes, including those of the Nile, Ebro, and Rhone rivers, fit within this framework. Our results provide quantitative insight into the potential evolution of active delta environments in light of future extreme reduction of fluvial sediment input.
  • Article
    On a neck, on a spit : controls on the shape of free spits
    (Copernicus Publications on behalf of the European Geosciences Union, 2016-02-03) Ashton, Andrew D. ; Nienhuis, Jaap H. ; Ells, Kenneth
    We investigate the controls upon the shape of freely extending spits using a one-contour-line model of shoreline evolution. In contrast to existing frameworks that suggest that spits are oriented in the direction of alongshore sediment transport and that wave refraction around the spit end is the primary cause of recurving, our results suggest that spit shoreline shapes are perhaps best understood as graded features arising from a complex interplay between distinct morphodynamic elements: the headland updrift of the spit, the erosive "neck" (which may be overwashing), and the depositional "hook". Between the neck and the hook lies a downdrift-migrating "fulcrum point" which tends towards a steady-state trajectory set by the angle of maximum alongshore sediment transport. Model results demonstrate that wave climate characteristics affect spit growth; however, we find that the rate of headland retreat exerts a dominant control on spit shape, orientation, and progradation rate. Interestingly, as a spit forms off of a headland, the rate of sediment input to the spit itself emerges through feedbacks with the downdrift spit end, and in many cases faster spit progradation may coincide with reduced sediment input to the spit itself. Furthermore, as the depositional hook rests entirely beyond the maximum in alongshore sediment transport, this shoreline reach is susceptible to high-angle wave instability throughout and, as a result, spit depositional signals may be highly autogenic.
  • Article
    Mechanics and rates of tidal inlet migration : modeling and application to natural examples
    (John Wiley & Sons, 2016-11-10) Nienhuis, Jaap H. ; Ashton, Andrew D.
    Tidal inlets on barrier coasts can migrate alongshore hundreds of meters per year, often presenting great management and engineering challenges. Here we perform model experiments with migrating tidal inlets in Delft3D-SWAN to investigate the mechanics and rates of inlet migration. Model experiments with obliquely approaching waves suggest that tidal inlet migration occurs due to three mechanisms: (1) littoral sediment deposition along the updrift inlet bank, (2) wave-driven sediment transport preferentially eroding the downdrift bank of the inlet, and (3) flood-tide-driven flow preferentially cutting along the downdrift inlet bank because it is less obstructed by flood-tidal delta deposits. To quantify tidal inlet migration, we propose and apply a simple mass balance framework of sediment fluxes around inlets that includes alongshore sediment bypassing and flood-tidal delta deposition. In model experiments, both updrift littoral sediment and the eroded downdrift inlet bank are sediment sources to the growing updrift barrier and the flood-tidal delta, such that tidal inlets can be net sink of up to 150% of the littoral sediment flux. Our mass balance framework demonstrates how, with flood-tidal deltas acting as a littoral sediment sink, migrating tidal inlets can drive erosion of the downdrift barrier beach. Parameterizing model experiments, we propose a predictive model of tidal inlet migration rates based upon the relative momentum flux of the inlet jet and the alongshore radiation stress; we then compare these predicted migration rates to 22 natural tidal inlets along the U.S. East Coast and find good agreement.
  • Preprint
    Littoral steering of deltaic channels
    ( 2016-08) Nienhuis, Jaap H. ; Ashton, Andrew D. ; Giosan, Liviu
    The typically single-threaded channels on wave-influenced deltas show striking differences in their orientations, with some channels oriented into the incoming waves (e.g., Ombrone, Krishna), and others oriented away from the waves (e.g., Godavari, Sao Francisco). Understanding the controls on channel orientation is important as the channel location greatly influences deltaic morphology and sedimentology, both subaerially and subaqueously. Here, we explore channel orientation and consequent feedbacks with local shoreline dynamics using a plan-form numerical model of delta evolution. The model treats fluvial sediment delivery to a wave-dominated coast in two ways: 1) channels are assumed to prograde in a direction perpendicular to the local shoreline orientation and 2) a controlled fraction of littoral sediment transport can bypass the river mouth. Model results suggest that channels migrate downdrift when there is a significant net littoral transport and alongshore transport bypassing of the river mouth is limited. In contrast, river channels tend to orient themselves into the waves when fluvial sediment flux is relatively large, causing the shoreline of the downdrift delta flank to attain the orientation of maximum potential sediment transport for the incoming wave climate. Using model results, we develop a framework to estimate channel orientations for wave-influenced deltas that shows good agreement with natural examples. An increase in fluvial sediment input can cause a channel to reorient itself into incoming waves, behavior observed, for example, in the Ombrone delta in Italy. Our results can inform paleoclimate studies by linking channel orientation to fluvial sediment flux and wave energy. In particular, our approach provides a means to quantify past wave directions, which are notoriously difficult to constrain.
  • Article
    Alongshore sediment bypassing as a control on river mouth morphodynamics
    (John Wiley & Sons, 2016-04-21) Nienhuis, Jaap H. ; Ashton, Andrew D. ; Nardin, William ; Fagherazzi, Sergio ; Giosan, Liviu
    River mouths, shoreline locations where fluvial and coastal sediments are partitioned via erosion, trapping, and redistribution, are responsible for the ultimate sedimentary architecture of deltas and, because of their dynamic nature, also pose great management and engineering challenges. To investigate the interaction between fluvial and littoral processes at wave-dominated river mouths, we modeled their morphologic evolution using the coupled hydrodynamic and morphodynamic model Delft3D-SWAN. Model experiments replicate alongshore migration of river mouths, river mouth spit development, and eventual spit breaching, suggesting that these are emergent phenomena that can develop even under constant fluvial and wave conditions. Furthermore, we find that sediment bypassing of a river mouth develops though feedbacks between waves and river mouth morphology, resulting in either continuous bypassing pathways or episodic bar bypassing pathways. Model results demonstrate that waves refracting into the river mouth bar create a zone of low alongshore sediment transport updrift of the river mouth, which reduces sediment bypassing. Sediment bypassing, in turn, controls the river mouth migration rate and the size of the river mouth spit. As a result, an intermediate amount of river discharge maximizes river mouth migration. The fraction of alongshore sediment bypassing can be predicted from the balance between the jet and the wave momentum flux. Quantitative comparisons show a match between our modeled predictions of river mouth bypassing and migration rates observed in natural settings.
  • Article
    Wavelength selection and symmetry breaking in orbital wave ripples
    (John Wiley & Sons, 2014-10-20) Nienhuis, Jaap H. ; Perron, J. Taylor ; Kao, Justin C. T. ; Myrow, Paul M.
    Sand ripples formed by waves have a uniform wavelength while at equilibrium and develop defects while adjusting to changes in the flow. These patterns arise from the interaction of the flow with the bed topography, but the specific mechanisms have not been fully explained. We use numerical flow models and laboratory wave tank experiments to explore the origins of these patterns. The wavelength of “orbital” wave ripples (λ) is directly proportional to the oscillating flow's orbital diameter (d), with many experimental and field studies finding λ/d ≈ 0.65. We demonstrate a coupling that selects this ratio: the maximum length of the flow separation zone downstream of a ripple crest equals λ when λ/d ≈ 0.65. We show that this condition maximizes the growth rate of ripples. Ripples adjusting to changed flow conditions develop defects that break the bed's symmetry. When d is shortened sufficiently, two new incipient crests appear in every trough, but only one grows into a full-sized crest. Experiments have shown that the same side (right or left) wins in every trough. We find that this occurs because incipient secondary crests slow the flow and encourage the growth of crests on the next flank. Experiments have also shown that when d is lengthened, ripple crests become increasingly sinuous and eventually break up. We find that this occurs because crests migrate preferentially toward the nearest adjacent crest, amplifying any initial sinuosity. Our results reveal the mechanisms that form common wave ripple patterns and highlight interactions among unsteady flows, sediment transport, and bed topography.
  • Thesis
    Plan-view evolution of wave-dominated deltas
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2016-02) Nienhuis, Jaap H.
    Ocean waves are a powerful sediment transport mechanism in the coastal zone. This thesis investigates how waves shape deltaic landforms and how small scale river mouth processes affect large-scale delta morphology. I have developed and applied models of plan-view delta shape and their channel dynamics. Simple parameterizations and key insights from these models have allowed us to transcend spatial scales from river mouths to delta plains and make morphologic predictions around the globe for every delta on Earth. I have applied models of delta morphology to backtrack the late Holocene evolution of the Ebro River delta in Spain and estimate timescales and magnitude of past climate change and human impacts. Currently, many deltas around the world face large sediment deficits because of river damming. I model deltaic response to reductions in sediment load and offer frameworks to predict future deltaic change in these dynamic and threatened coastal regions.