Carter Andrew

No Thumbnail Available
Last Name
Carter
First Name
Andrew
ORCID

Search Results

Now showing 1 - 4 of 4
  • Article
    Thermochronology of the modern Indus River bedload: New insight into the controls on the marine stratigraphic record
    (American Geophysical Union, 2004-10-16) Clift, Peter D. ; Campbell, Ian H. ; Pringle, Malcolm S. ; Carter, Andrew ; Zhang, Xifan ; Hodges, Kip V. ; Khan, Ali Athar ; Allen, Charlotte M.
    The Indus River is the only major drainage in the western Himalaya and delivers a long geological record of continental erosion to the Arabian Sea, which may be deciphered and used to reconstruct orogenic growth if the modern bedload can be related to the mountains. In this study we collected thermochronologic data from river sediment collected near the modern delta. U-Pb ages of zircons spanning 3 Gyr show that only ~5% of the eroding crust has been generated since India-Asia collision. The Greater Himalaya are the major source of zircons, with additional contributions from the Karakoram and Lesser Himalaya. The 39Ar/40Ar dating of muscovites gives ages that cluster between 10 and 25 Ma, differing from those recorded in the Bengal Fan. Biotite ages are generally younger, ranging 0–15 Ma. Modern average exhumation rates are estimated at ~0.6 km/m.y. or less, and have slowed progressively since the early Miocene (~20 Ma), although fission track (FT) dating of apatites may indicate a recent moderate acceleration in rates since the Pliocene (~1.0 km/m.y.) driven by climate change. The 39Ar/40Ar and FT techniques emphasize the dominance of high topography in controlling the erosional flux to the ocean. Localized regions of tectonically driven, very rapid exhumation (e.g., Nanga Parbat, S. Karakoram metamorphic domes) do not dominate the erosional record.
  • Article
    U‐PB detrital zircon geochronology of the Lower Danube and Its tributaries : implications for the geology of the Carpathians
    (John Wiley & Sons, 2018-09-14) Ducea, Mihai N. ; Giosan, Liviu ; Carter, Andrew ; Balica, Constantin ; Stoica, Adriana M. ; Roban, Relu D. ; Balintoni, Ion ; Filip, Florin ; Petrescu, Lucian
    We performed a detrital zircon (DZ) U‐Pb geochronologic survey of the lower parts of the Danube River approaching its Danube delta, Black Sea sink, and a few large tributaries (Tisza, Jiu, Olt, and Siret) originating in the nearby Carpathian Mountains. Samples are modern sediments. DZ age spectra reflect the geology and specifically the crustal age formation of the source area, which in this case is primarily the Romanian Carpathians and their foreland with contributions from the Balkan Mountains to the south of Danube and the East European Craton. The zircon cargo of these rivers suggests a source area that formed during the latest Proterozoic and mostly into the Cambrian and Ordovician as island arcs and back‐arc basins in a Peri‐Gondwanan subduction setting (~600–440 Ma). The Inner Carpathian units are dominated by a U‐Pb DZ peak in the Ordovician (460–470 Ma) and little inheritance from the nearby continental masses, whereas the Outer Carpathian units and the foreland have two main peaks, one Ediacaran (570–610 Ma) and one in the earliest Permian (290–300 Ma), corresponding to granitic rocks known regionally. A prominent igneous Variscan peak (320–350 Ma) in the Danube's and tributaries DZ zircon record is difficult to explain and points out to either an extra Carpathian source or major unknown gaps in our understanding of Carpathian geology. Younger peaks corresponding to arc magmatism during the Alpine period make up as much as about 10% of the DZ archive, consistent with the magnitude and surface exposure of Mesozoic and Cenozoic arcs.
  • Preprint
    Detrital U–Pb zircon dating of lower Ordovician syn-arc-continent collision conglomerates in the Irish Caledonides
    ( 2008-04-15) Clift, Peter D. ; Carter, Andrew ; Draut, Amy E. ; Long, Hoang Van ; Chew, David M. ; Schouten, Hans A.
    The Early Ordovician Grampian Orogeny in the British Isles represents a classic example of collision between an oceanic island arc and a passive continental margin, starting around 480 Ma. The South Mayo Trough in western Ireland preserves a complete and well-dated sedimentary record of arc collision. We sampled sandstones and conglomerates from the Rosroe, Maumtrasna and Derryveeny Formations in order to assess erosion rates and patterns during and after arc collision. U-Pb dating of zircons reveals a provenance dominated by erosion from the upper levels of the Dalradian Supergroup (Southern Highland and Argyll Groups), with up to 20% influx from the colliding arc into the Rosroe Formation, but only 6% in the Maumtrasna Formation (~465 Ma). The 24 dominant source regions lay to the northeast (e.g. in the vicinity of the Ox Mountains, 50 km distant, along strike). The older portions of the North Mayo Dalradian and its depositional basement (the Annagh Gneiss Complex) do not appear to have been important sources, while the Connemara Dalradian only plays a part after 460 Ma, when it supplies the Derryveeny Formation. By this time all erosion from the arc had effectively ceased and exhumation rates had slowed greatly. The Irish Grampian Orogeny parallels the modern Taiwan collision in showing little role for the colliding arc in the production of sediment. Negligible volumes of arc crust are lost because of erosion during accretion to the continental margin.
  • Article
    No modern Irrawaddy River until the late Miocene-Pliocene
    (Elsevier, 2022-04-04) Jonell, Tara N. ; Giosan, Liviu ; Clift, Peter D. ; Carter, Andrew ; Bretschneider, Lisa ; Hathorne, Ed C. ; Barbarano, Marta ; Garzanti, Eduardo ; Vezzoli, Giovanni ; Naing, Thet
    The deposits of large Asian rivers with unique drainage geometries have attracted considerable attention due to their explanatory power concerning tectonism, surface uplift and upstream drainage evolution. This study presents the first petrographic, heavy mineral, Nd and Sr isotope geochemistry, and detrital zircon geochronology results from the Holocene Irrawaddy megadelta alongside modern and ancient sedimentary provenance datasets to assess the late Neogene evolution of the Irrawaddy River. Contrary to models advocating a steady post-middle Miocene river, we reveal an evolution of the Irrawaddy River more compatible with regional evidence for kinematic reorganization in Myanmar during late-stage India-Asia collision. Quaternary sediments are remarkably consistent in terms of provenance but highlight significant decoupling amongst fine and coarse fraction 87Sr/86Sr and due to hydraulic sorting. Only well after the late Miocene do petrographic, heavy mineral, isotope geochemistry, and detrital zircon U–Pb results from the trunk Irrawaddy and its tributaries achieve modern-day signatures. The primary driver giving rise to the geometry and provenance signature of the modern Irrawaddy River was regional late Miocene (≤10 Ma) basin inversion coupled with uplift and cumulative displacement along the Sagaing Fault. Middle to late Miocene provenance signatures cannot be reconciled with modern river geometries, and thus require significant loss of headwaters feeding the Chindwin subbasin after ∼14 Ma and the northern Shwebo subbasin after ∼11 Ma. Large-scale reworking after ∼7 Ma is evidenced by modern Irrawaddy River provenance, by entrenchment of the nascent drainage through Plio-Pleistocene inversion structures, and in the transfer of significant sediment volumes to the Andaman Sea.