Canuel
Elizabeth A.
Canuel
Elizabeth A.
No Thumbnail Available
Search Results
Now showing
1 - 4 of 4
-
ArticleAnaerobic methane oxidation in low-organic content methane seep sediments(Elsevier Ltd., 2013-02-04) Pohlman, John W. ; Riedel, Michael ; Bauer, James E. ; Canuel, Elizabeth A. ; Paull, Charles K. ; Lapham, Laura L. ; Grabowski, Kenneth S. ; Coffin, Richard B. ; Spence, George D.Sulfate-dependent anaerobic oxidation of methane (AOM) is the key sedimentary microbial process limiting methane emissions from marine sediments and methane seeps. In this study, we investigate how the presence of low-organic content sediment influences the capacity and efficiency of AOM at Bullseye vent, a gas hydrate-bearing cold seep offshore of Vancouver Island, Canada. The upper 8 m of sediment contains <0.4 wt.% total organic carbon (OC) and primarily consists of glacially-derived material that was deposited 14,900–15,900 yrs BP during the retreat of the late Quaternary Cordilleran Ice Sheet. We hypothesize this aged and exceptionally low-OC content sedimentary OM is biologically refractory, thereby limiting degradation of non-methane OM by sulfate reduction and maximizing methane consumption by sulfate-dependent AOM. A radiocarbon-based dissolved inorganic carbon (DIC) isotope mass balance model demonstrates that respired DIC in sediment pore fluids is derived from a fossil carbon source that is devoid of 14C. A fossil origin for the DIC precludes remineralization of non-fossil OM present within the sulfate zone as a significant contributor to pore water DIC, suggesting that nearly all sulfate is available for anaerobic oxidation of fossil seep methane. Methane flux from the SMT to the sediment water interface in a diffusion-dominated flux region of Bullseye vent was, on average, 96% less than at an OM-rich seep in the Gulf of Mexico with a similar methane flux regime. Evidence for enhanced methane oxidation capacity within OM-poor sediments has implications for assessing how climate-sensitive reservoirs of sedimentary methane (e.g., gas hydrate) will respond to ocean warming, particularly along glacially-influenced mid and high latitude continental margins.
-
ArticleRepresenting the function and sensitivity of coastal interfaces in earth system models(Nature Research, 2020-05-18) Ward, Nicholas D. ; Megonigal, J. Patrick ; Bond-Lamberty, Benjamin ; Bailey, Vanessa L. ; Butman, David ; Canuel, Elizabeth A. ; Diefenderfer, Heida ; Ganju, Neil K. ; Goni, Miguel ; Graham, Emily B. ; Hopkinson, Charles S. ; Khangaonkar, Tarang ; Langley, J. Adam ; McDowell, Nate G. ; Myers-Pigg, Allison N. ; Neumann, Rebecca B. ; Osburn, Christopher L. ; Price, René M. ; Rowland, Joel ; Sengupta, Aditi ; Simard, Marc ; Thornton, Peter E. ; Tzortziou, Maria ; Vargas, Rodrigo ; Weisenhorn, Pamela B. ; Windham-Myers, LisamarieBetween the land and ocean, diverse coastal ecosystems transform, store, and transport material. Across these interfaces, the dynamic exchange of energy and matter is driven by hydrological and hydrodynamic processes such as river and groundwater discharge, tides, waves, and storms. These dynamics regulate ecosystem functions and Earth’s climate, yet global models lack representation of coastal processes and related feedbacks, impeding their predictions of coastal and global responses to change. Here, we assess existing coastal monitoring networks and regional models, existing challenges in these efforts, and recommend a path towards development of global models that more robustly reflect the coastal interface.
-
PreprintMethane sources in gas hydrate-bearing cold-seeps : evidence from radiocarbon and stable isotopes( 2009-06-16) Pohlman, John W. ; Bauer, James E. ; Canuel, Elizabeth A. ; Grabowski, Kenneth S. ; Knies, D. L. ; Mitchell, C. S. ; Whiticar, M. J. ; Coffin, Richard B.Fossil methane from the large and dynamic marine gas hydrate reservoir has the potential to influence oceanic and atmospheric carbon pools. However, natural radiocarbon (14C) measurements of gas hydrate methane have been extremely limited, and their use as a source and process indicator has not yet been systematically established. In this study, gas hydrate-bound and dissolved methane recovered from six geologically and geographically distinct high-gas-flux cold seeps was found to be 98 to 100% fossil based on its 14C content. Given this prevalence of fossil methane and the small contribution of gas hydrate (≤1%) to the present-day atmospheric methane flux, non-fossil contributions of gas hydrate methane to the atmosphere are not likely to be quantitatively significant. This conclusion is consistent with contemporary atmospheric methane budget calculations. In combination with δ13C- and δD-methane measurements, we also determine the extent to which the low, but detectable, amounts of 14C (~ 1-2 percent modern carbon, pMC) in methane from two cold seeps might reflect in situ production from near-seafloor sediment organic carbon (SOC). A 14C mass balance approach using fossil methane and 14C-enriched SOC suggests that as much as 8 to 29% of hydrate-associated methane carbon may originate from SOC contained within the upper 6 meters of sediment. These findings validate the assumption of a predominantly fossil carbon source for marine gas hydrate, but also indicate that structural gas hydrate from at least certain cold seeps contains a component of methane produced during decomposition of non-fossil organic matter in near-surface sediment.
-
ArticleCarbon budget of tidal wetlands, estuaries, and shelf waters of eastern North America(John Wiley & Sons, 2018-04-04) Najjar, Raymond G. ; Herrmann, Maria ; Alexander, Richard ; Boyer, Elizabeth W. ; Burdige, David J. ; Butman, David ; Cai, Wei-Jun ; Canuel, Elizabeth A. ; Chen, Robert F. ; Friedrichs, Marjorie A. M. ; Feagin, Russell A. ; Griffith, Peter C. ; Hinson, Audra L. ; Holmquist, James R. ; Hu, Xinping ; Kemp, William M. ; Kroeger, Kevin D. ; Mannino, Antonio ; McCallister, S. Leigh ; McGillis, Wade R. ; Mulholland, Margaret R. ; Pilskaln, Cynthia H. ; Salisbury, Joseph E. ; Signorini, Sergio R. ; St-Laurent, Pierre ; Tian, Hanqin ; Tzortziou, Maria ; Vlahos, Penny ; Wang, Zhaohui Aleck ; Zimmerman, Richard C.Carbon cycling in the coastal zone affects global carbon budgets and is critical for understanding the urgent issues of hypoxia, acidification, and tidal wetland loss. However, there are no regional carbon budgets spanning the three main ecosystems in coastal waters: tidal wetlands, estuaries, and shelf waters. Here we construct such a budget for eastern North America using historical data, empirical models, remote sensing algorithms, and process‐based models. Considering the net fluxes of total carbon at the domain boundaries, 59 ± 12% (± 2 standard errors) of the carbon entering is from rivers and 41 ± 12% is from the atmosphere, while 80 ± 9% of the carbon leaving is exported to the open ocean and 20 ± 9% is buried. Net lateral carbon transfers between the three main ecosystem types are comparable to fluxes at the domain boundaries. Each ecosystem type contributes substantially to exchange with the atmosphere, with CO2 uptake split evenly between tidal wetlands and shelf waters, and estuarine CO2 outgassing offsetting half of the uptake. Similarly, burial is about equal in tidal wetlands and shelf waters, while estuaries play a smaller but still substantial role. The importance of tidal wetlands and estuaries in the overall budget is remarkable given that they, respectively, make up only 2.4 and 8.9% of the study domain area. This study shows that coastal carbon budgets should explicitly include tidal wetlands, estuaries, shelf waters, and the linkages between them; ignoring any of them may produce a biased picture of coastal carbon cycling.